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A dynamic interactive theory of person construal is proposed. It assumes that the perception of other
people is accomplished by a dynamical system involving continuous interaction between social catego-
ries, stereotypes, high-level cognitive states, and the low-level processing of facial, vocal, and bodily
cues. This system permits lower-level sensory perception and higher-order social cognition to dynami-
cally coordinate across multiple interactive levels of processing to give rise to stable person construals.
A recurrent connectionist model of this system is described, which accounts for major findings on (a)
partial parallel activation and dynamic competition in categorization and stereotyping, (b) top-down
influences of high-level cognitive states and stereotype activations on categorization, (c) bottom-up
category interactions due to shared perceptual features, and (d) contextual and cross-modal effects on
categorization. The system’s probabilistic and continuously evolving activation states permit multiple
construals to be flexibly active in parallel. These activation states are also able to be tightly yoked to
ongoing changes in external perceptual cues and to ongoing changes in high-level cognitive states. The
implications of a rapidly adaptive, dynamic, and interactive person construal system are discussed.
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If humans treated every new stimulus as a unique experience,
we would quickly drown in a bewildering amount of redundant
information. To improve the situation, the cognitive system groups
stimuli that share similar characteristics into meaningful categories
(Murphy, 2002; Rosch, 1978). In general, such categorization has
numerous benefits. The brown, four-legged, wooden flat surface
appearing before your eyes is instantly rendered “table,” some-
thing to put things on, and not “chair,” something to sit on. This
saves time in making sense of the object and leads to adaptive
behavior (e.g., that you do not sit on a table). This is but one
example of how, in sorting through an impossibly complex world,
categorization provides an efficient cognitive strategy to make the
perceiver’s job far easier.

The benefit of streamlining mental resources by categorizing
other people rather than furniture, however, is not so straightfor-
ward. Indeed, social psychologists recognized the tremendous
implications of person categorization early on. Seminal writers—
such as Allport (1954), Sherif (1948), and Tajfel (1969)—
converged on the argument that categorizing other people was an
inevitable economizing strategy used to simplify the cognitive
demands of dealing with others. Their work had wide-sweeping

influences on person perception research, and for nearly half a
century their arguments set the stage for work on social categori-
zation. Mere exposure to another person, it was thought, automat-
ically triggered a relevant social category (e.g., sex, race, age), and
along with that category, its corresponding knowledge structure.
Activating category knowledge, it was shown, spontaneously trig-
gered a variety of cognitive, affective, and behavioral outcomes.
Countless studies documented how a White person’s exposure to a
Black man, for instance, unleashes a specific cascade of events.
Encountering a Black man automatically activates the category,
Black, which molds subsequent judgments and impressions (e.g.,
“he’s aggressive”), triggers evaluations (e.g., “I don’t like him”),
and elicits patterns of behavior (e.g., increases in aggression;
Bargh, 1994, 1999; Brewer, 1988; Devine, 1989; Dovidio,
Kawakami, Johnson, Johnson, & Howard, 1997; Fazio, Jackson,
Dunton, & Williams, 1995; Fiske & Neuberg, 1990; D. T. Gilbert
& Hixon, 1991; Sinclair & Kunda, 1999). It became clear that
social categorization influenced stereotyping and prejudice and
had a powerful role in shaping interpersonal interaction. Given the
implications, social psychological research placed a great deal of
focus on the downstream dynamics of categorization, on the ways
that categorical thinking shapes interpersonal outcomes.

Until quite recently, person perception research by and large
investigated how perceivers make judgments and evaluations from
written behavioral descriptions (but see McArthur & Baron, 1983).
Real-world social targets, however, are not generally encountered
through behavioral descriptions. Rather, in real life, perceivers
encounter other people first through sensory cues of the face,
voice, and body. The theoretical and empirical work examining the
links between lower-level perceptual processing and higher-order
social cognition began only recently (see Bodenhausen & Macrae,
2006; Zebrowitz, 2006). Although it was long understood that
perceivers frequently categorize other people along a variety of
dimensions (e.g., sex, race, age) from mere exposure to their face

This article was published Online First February 28, 2011.
Jonathan B. Freeman and Nalini Ambady, Department of Psychology,

Tufts University.
This work was supported by National Science Foundation Research

Grant BCS-0435547 to Nalini Ambady. We thank Phillip Holcomb, Max
Weisbuch, Kristin Pauker, Michael Slepian, Steven Young, and Robert
Ellis for helpful comments on earlier versions of this article. We are
indebted to Kerri Johnson for valuable insights and to Rick Dale for
committed guidance.

Correspondence concerning this article should be addressed to Jonathan
B. Freeman, Department of Psychology, Tufts University, 490 Boston
Avenue, Medford, MA 02155. E-mail: jon.freeman@tufts.edu

Psychological Review © 2011 American Psychological Association
2011, Vol. 118, No. 2, 247–279 0033-295X/11/$12.00 DOI: 10.1037/a0022327

247



(Brewer, 1988; Fiske & Neuberg, 1990; Stangor, Lynch, Duan, &
Glas, 1992), the mechanisms and perceptual determinants under-
lying these categorizations received considerably less attention.

While social psychologists were documenting the downstream
implications of perceiving others, cognitive psychologists and
neuroscientists were examining person perception from a different
perspective. They were concentrating their efforts on investigating
the perceptual mechanisms of face processing (Bruce & Young,
1986; Burton, Bruce, & Johnston, 1990; Calder & Young, 2005;
Farah, Wilson, Drain, & Tanaka, 1998; Haxby, Hoffman, & Gob-
bini, 2000). Recently, by integrating the social cognitive frame-
work of person perception with insights from the cognitive liter-
ature on face processing, a growing body of research has begun to
link lower-level perceptual processing with higher-order social
cognition. This emerging body of work has come to be referred to
as “person construal” research. Traditional social cognition re-
search focused on the relatively high-level cognitive processes
involved in person categorization and individuation, especially
how these shape downstream phenomena (e.g., stereotyping, be-
havior). Person construal research, on the other hand, seeks to
understand the lower-level perceptual mechanisms that produce
these social cognitive phenomena in the first place.

Purpose of the Article

Social cognition researchers have developed a number of mod-
els of person perception, including models that explain how we
reason about other people and infer their personality traits; how we
categorize and individuate; and how explicit knowledge and mem-
ory of other people is learned, stored, and accessed (Bodenhausen
& Macrae, 1998; Brewer, 1988; Chaiken & Trope, 1999; Fiske,
Cuddy, Glick, & Xu, 2002; Fiske & Neuberg, 1990; Higgins,
1996; Kunda & Thagard, 1996; Read & Miller, 1998b; E. R. Smith
& DeCoster, 1998; Srull & Wyer, 1989; Van Overwalle & Labi-
ouse, 2004). These models tend to place categorization as a start-
ing point, after which subsequent interpersonal phenomena are
richly explained (e.g., impressions, memory, behavior). Thus, the
focus of these models is not to explain the categorization process;
it is to explain the higher-order social cognitive processing that
comes after.

Person construal research seeks to examine the lower-level
perceptual mechanisms and determinants of categorization, includ-
ing how categories and stereotypes are activated from cues of the
face, voice, and body. To our knowledge, there has yet to be a
comprehensive framework that details how such lower-level per-
ceptual processing contributes to higher-order social cognitive
phenomena. Here, we introduce such a framework, which utilizes
increasingly popular approaches to cognition, namely connection-
ism and dynamical systems theory (Kelso, 1995; Port & van
Gelder, 1995; Rogers & McClelland, 2004; Rumelhart, Hinton, &
McClelland, 1986; Smolensky, 1989; Spivey, 2007). Recently,
researchers have applied connectionist models to understand social
cognitive phenomena as well (e.g., Kunda & Thagard, 1996; Read
& Miller, 1993, 1998a; Read, Vanman, & Miller, 1997; E. R.
Smith & DeCoster, 1998, 1999; Van Overwalle, 2007; Van Over-
walle & Labiouse, 2004; Zebrowitz, Fellous, Mignault, & Andreo-
letti, 2003). In the present article, we apply connectionism and
dynamical systems theory to comprehensively explain the process

of person construal. Thus, we aim to provide a framework that
explains social categorization processes at a perceptual level and
links these processes to the higher-order social cognitive phenom-
ena emphasized in prior models of person perception.

In the past decade, person construal research has documented a
number of fascinating effects that have yet to be comprehensively
accounted for by theoretical models. These range from findings of
partial parallel activation, dynamic competition and continuous
temporal dynamics, contextual and cross-modal effects on catego-
rization, bottom-up category interactions due to shared perceptual
features, and top-down effects on categorization, such as influ-
ences of motivational state, stereotype activation, and prejudice,
among others (e.g., Becker, Kenrick, Neuberg, Blackwell, &
Smith, 2007; Eberhardt, Dasgupta, & Banaszynski, 2003; Freeman
& Ambady, 2009, 2011; Freeman, Ambady, Rule, & Johnson,
2008; Freeman, Pauker, Apfelbaum, & Ambady, 2010; Hugenberg
& Bodenhausen, 2003, 2004; Pauker et al., 2009). Together, these
emerging findings suggest that person construal is a dynamic and
highly interactive process. Here, we offer a framework for person
construal that can explain these recent advances.

First, we describe our dynamic interactive theory of person
construal. Then, we introduce a computational model that captures
our theoretical claims. We then explain how a number of recent
findings are consistent with the model, and we conduct several
simulations to demonstrate this. Lastly, we discuss how the theory
and model compare with extant accounts, and we discuss several
important implications for present understandings of person con-
strual.

A Dynamic Interactive Theory of Person Construal

We view the task of perceiving others as a dynamic interactive
process, and we expound on this view below.

Top-Down and Bottom-Up Interactivity

In perceiving the world, we are continually extracting sensory
information to guide our attempts in discerning what it is that lies
before us. Even with the most mundane kinds of construal, such as
perceiving objects or environments, we bring a great deal of
knowledge to the perceptual process. This is only truer in the case
of perceiving other people. Our rich set of prior experiences with
another person or the regularities in our experience with whole
groups of people (e.g., sex, race, age) undoubtedly provide a lens
through which we construe others. Beyond the prior knowledge
that might contextualize perception, our everyday encounters with
others are also replete with complex affective and motivational
states. Though there is much prior knowledge about the objects or
environments we might encounter, this only pales in comparison
with what is brought to the table when perceiving other people. We
may have stereotypic beliefs about people of a certain sex, we may
feel disdain for someone who has made us cry, or we may be
motivated to make a good impression to land the job. In short,
there is an enormity of prior knowledge and high-level states that
may be brought to bear on the perception of our social world.
Although traditionally it was long assumed that perception is
primarily a bottom-up phenomenon and insulated from any top-
down influence of higher-order processes (e.g., Fodor, 1983; Marr,
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1982), it is becoming increasingly clear that perception arises
instead from both bottom-up and top-down influences, likely me-
diated by large-scale neural oscillations (e.g., Engel, Fries, &
Singer, 2001; C. D. Gilbert & Sigman, 2007). Even the earliest of
responses in primary visual cortex, for example, are altered by
top-down factors (Li, Piëch, & Gilbert, 2004). We argue, therefore,
that our prior knowledge and expectations about people, our ste-
reotypes, and our affective and motivational states may all dynam-
ically interact with incoming sensory information in the perceptual
process to shape person construal.

The person construal process invites another form of interactiv-
ity as well, one that is driven directly by the incoming sensory
information itself. Whereas the perception of an object, for exam-
ple, generally affords only one focal type of construal (e.g., “that’s
a table”), multiple construals are simultaneously availed to person
perceivers, including sex, race, age, emotion, or inferences of
personality characteristics, to name a few. Given how many con-
struals are available, sometimes the perceptual cues supporting
certain construals will, by chance, overlap. For instance, the cues
specifying another person’s sex and emotional state can overlap
(Becker et al., 2007). An adult’s facial features might by chance
happen to overlap with the facial features more common in babies
or with the facial features of another person we know, in turn
shaping our inferences of his or her personality characteristics
(Zebrowitz & Montepare, 2008). Thus, certain person construals
may be thrown into interaction with one another because they are
directly confounded in the bottom-up sensory information itself.

Time Dependence and Continuous Temporal
Dynamics

We argue that the process of person construal is dynamic, in the
sense that it takes time and fluctuates over time, and that repre-
sentations triggered during this process are inherently time-
dependent. For instance, recent evidence shows that, after catching
sight of another person, representations of social categories and
stereotypes dynamically evolve across hundreds of milliseconds
until stabilizing over time (Freeman & Ambady, 2009; Freeman et
al., 2008; Freeman, Pauker, et al., 2010; also see Kunda, Davies,
Adams, & Spencer, 2002). Thus, at each moment during the
categorization process, representations are varying as a function of
time, making time-dependent transitions between, for instance,
�0% activation and �100% activation (Dale, Kehoe, & Spivey,
2007; Freeman et al., 2008). This is not particularly surprising
when considering how a social categorization would be imple-
mented in an actual human brain.

For instance, there is now a great deal of evidence suggesting
that mental representations, as realized in the brain, are neuronal
populations that convey information (e.g., “he’s a man!”) through
patterns of activity distributed across many neurons (Rogers &
McClelland, 2004; Spivey, 2007; Spivey & Dale, 2004). This was
confirmed with regard to representations of the face by studies that
recorded populations of temporal cortex neurons in nonhuman
primates (Rolls & Tovee, 1995; Sugase, Yamane, Ueno, &
Kawano, 1999). Thus, most modern-day accounts assume that
mental representations, such as a representation of a social cate-
gory, involve continuous changes in a pattern of neuronal activity
(e.g., Rogers & McClelland, 2004; P. L. Smith & Ratcliff, 2004;

Spivey, 2007; Spivey & Dale, 2004; Usher & McClelland, 2001).
For instance, about 50% of a face’s identity is transiently repre-
sented in macaque temporal cortex as early as only 80 ms after a
face’s presentation, but the remaining 50% of its representation
gradually accumulates over the following hundreds of millisec-
onds (Rolls & Tovee, 1995). Thus, in early moments of processing
representations of a face’s category memberships would reflect a
rough “gist,” because the initial rough sketch of the face is partially
consistent with multiple interpretations (e.g., both male and fe-
male). As the ongoing accrual of more and more information
continues, however, the pattern of neuronal activity gradually
sharpens into an increasingly clear interpretation (e.g., male) while
other competing, partially active representations (e.g., female) are
pushed out (Freeman, Ambady, Midgley, & Holcomb, in press;
Freeman et al., 2008; P. L. Smith & Ratcliff, 2004; Spivey & Dale,
2004; Usher & McClelland, 2001).

Indeed, by tracking the categorization process as it unfolds in
real-time (through measuring the trajectory of hand movements en
route to category responses on a screen), such a dynamic compe-
tition between multiple partially active representations has been
observed (Dale et al., 2007; Freeman & Ambady, 2009; Freeman
et al., 2008; Freeman, Pauker, et al., 2010). These findings suggest
that a single category representation (e.g., male) does not dis-
cretely activate at an instantaneous moment after a target’s pre-
sentation, and a single category representation does not transition
from zero activation to full activation across time. Instead, such
findings suggest that person construal involves alternative, com-
peting categories that are simultaneously and partially active, and
these evolve over time until stabilizing onto ultimate construals.
Given such continuous dynamics, we argue that person construal is
a temporally dynamic process and that person construal phenom-
ena (e.g., a social categorization; activation of a stereotype) are
best understood as gradual time-dependent transitions between
mental states (e.g., from State A, the initial sight of another person,
transitioning to State B, the �100% confident recognition that the
person is a White man). Further, we argue that during this time-
dependent process, representations of a person’s category mem-
berships (e.g., male, White) as well as other candidate category
memberships (e.g., female, Black, Asian) are rapidly fluctuating
over time until achieving a stable, steady state.

Complex Integration

Person construal routinely involves complex integration. Even
the simplest of construals, such as categorizing a person’s sex,
requires simultaneous integration of an enormous amount of in-
formation. For instance, all the various cues of the internal face in
addition to peripheral cues such as hair must be integrated into a
coherent interpretation of a target’s sex. In many person construal
tasks of the laboratory, this may be the only information available
to perceivers—and even these simple tasks require already a
substantial integration among cues. In everyday person construal
and more complicated laboratory tasks, however, the integration is
even more complex. For instance, perceivers receive information
from multiple sensory modalities at the same time. Thus, to per-
ceive the sex of real-world social targets, all the sex-specifying
cues of the face and body arriving in the visual system must be
integrated together with the vocal cues arriving in the auditory

249DYNAMIC INTERACTIVE THEORY OF PERSON CONSTRUAL



system. Moreover, not only does bottom-up sensory information
need to be integrated, so too do top-down information sources, as
described earlier. For instance, high-level motivational states in-
fluence the perception of a face’s race (Pauker et al., 2009).
Moreover, priming context, expectations, stereotypes, cultural
knowledge, among many other top-down factors, shape basic
perceptions (e.g., Balcetis & Dunning, 2006; Eberhardt et al.,
2003; Hugenberg & Bodenhausen, 2004; Johnson, Pollick, &
McKay, 2010; MacLin & Malpass, 2001; Pauker, Rule, & Am-
bady, 2010). Thus, there is a complexity of information involving
many sources—some bottom-up, some top-down—that must be in-
tegrated together in a very short amount of time to perceive others.

Theoretical Claims

In consideration of the above, we propose that perceptions of
other people are accomplished by a dynamical system in which
they gradually emerge through ongoing cycles of interaction be-
tween categories, stereotypes, high-level cognitive states, and the
low-level processing of facial, vocal, and bodily cues. As such, this
system permits lower-level sensory perception and higher-order
social cognition to continuously coordinate across multiple inter-
active levels of processing to give rise to stable person construals.
We capture this dynamic interactive theory of person construal
with a computational model, which is introduced below.

The Integrative Power of a Recurrent Connectionist
Network

Dynamical systems, such as a recurrent connectionist network
or the human brain, are powerful in their ability to integrate
multiple simultaneous sources of information. In a recurrent con-
nectionist network, there are a number of nodes with connections
that can be positive (excitatory) or negative (inhibitory). These
nodes are not intended to represent individual neurons, but the
overall structure of a network is often intended to be approxi-
mately neurally plausible. Arguably, nodes may operate like large
populations of neurons, and the connections between them operate
like synapses (Smolensky, 1989). The critical feature of a recurrent
connectionist network, which distinguishes it from other (feedfor-
ward) connectionist networks, is that many of these connections
are bidirectional. Thus, as one node’s activation tends to excite the
nodes connected to it, the excitation of the nodes connected to it
send feedback to the original node. Thus, many nodes in a recur-
rent network experience feedback, where they both influence and
are influenced by the other nodes connected to them. Indeed, it is
now clear that many neuronal projections in the human brain are
bidirectional, producing recurrent feedback loops across both local
and large-scale neural networks (e.g., Brefczynski & DeYoe,
1999; Dragoi, Sharma, & Sur, 2000; Lamme & Roelfsema, 2000;
also see Spivey, 2007). Thus, recurrent connectionist networks
have relatively high neural plausibility (Smolensky, 1989).

It is this feedback among nodes that leads to the powerfully
integrative nature of a recurrent network. Initially, a network is
stimulated by external input. This input could come from
bottom-up sources (e.g., facial or vocal cues) as well as top-down
ones (e.g., motivation, task demands, prejudice). Activation then
spreads among all nodes simultaneously (as a function of their

connection weights). Because many of the nodes receive feedback,
complex feedback loops are produced within the system. This
causes the system to dynamically converge on an overall stable
pattern of activation that best fits the input. This convergence
involves the network’s flows of activation gradually settling into a
stable, steady state, where the activation of each node reaches an
asymptote (Smolensky, 1989).

Dynamic constraint satisfaction. Because a node’s activa-
tion is a function of all the positive and negative connections to
other nodes that are activated in parallel, the final activation of a
node (i.e., when the system stabilizes on a steady state) can be
thought of as the satisfaction of multiple constraints. Each con-
nection between nodes is a constraint. For instance, a node repre-
senting the category Male might excite and be excited by another
node representing the stereotype Aggressive. When these two
nodes are incorporated in a larger recurrent network that is stim-
ulated by, for instance, a male face, this Male–Aggressive
between-node connection serves as a constraint on the network.
That is, for the network to ever achieve a stable state, activation
must flow through that connection and incorporate it into an
overall stable pattern (in addition to all other connections). Thus,
the steady states that a recurrent network eventually stabilizes on
are end-solutions that maximally satisfy all the constraints in the
network, including between-node connections (e.g., Male–
Aggressive) and the input (e.g., facial cues, vocal cues, task
demands, prejudice).1 As such, nodes in a recurrent network con-
strain each other in finding a best overall pattern that fits the input.
In person construal, therefore, the stable states that a recurrent
network achieves could be thought of as the satisfaction (i.e.,
integration) of many pieces of potentially conflicting information,
including bottom-up sources (e.g., facial cues) in addition to top-
down ones (e.g., motivational factors, task demands). This prop-
erty of recurrent connectionist networks—dynamic constraint sat-
isfaction—makes these networks powerfully integrative, much like
the person construal process itself. A thorough explanation of how
a dynamical system with feedback leads to the emergent ability to
stabilize on steady states that maximally satisfy system constraints
is beyond the scope of this article, but extensive discussions may
be found elsewhere (e.g., Hopfield, 1982; Rumelhart et al., 1986;
Smolensky, 1989).

Attractor dynamics. The stable states that a recurrent net-
work settles into may be described as attractors (see Churchland &
Sejnowski, 1989), in the sense that the network is attracted to be in
that activation pattern (because it maximally satisfies all the con-
straints). Given different initial conditions (e.g., different faces,
different high-level cognitive states), a network has many attrac-
tive overall patterns of activation (attractors) that it will gravitate
toward. The mathematical properties of the phenomenon of attrac-
tion, which is inherent to nonlinear dynamical systems across
nature (including cognitive and neural systems), have been studied
extensively (with respect to cognitive and neural systems; see

1 It should be noted that the steady states that a recurrent network achieves
cannot be guaranteed to reflect global maxima in satisfying the network’s
constraints, but only local maxima (see Rumelhart et al., 1986). If constraint
satisfaction were imagined as a process of hill-climbing, the system climbs and
settles into a nearby peak, but it might not be the highest peak.
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Churchland & Sejnowski, 1989; Izhikevich, 2006; Kelso, 1995;
Rumelhart et al., 1986; Spivey, 2007).

If we modeled sex categorization in a recurrent connectionist
network, for instance, eventual judgments (e.g., “that’s a man!”)
would simply correspond with the person construal system grad-
ually stabilizing on a state of activation that best fits the input (e.g.,
a male face). Thus, we can conceive person construal as the
process by which the person construal system settles into an
attractor state—the overall pattern of activation that provides the
best global and integrated solution for the various inputs. These
inputs would include visual cues of the face but also potentially
many other simultaneous inputs, such as visual cues of the body,
vocal cues, motivations, task demands, among many others. Thus,
the attractor dynamics of a recurrent connectionist network allow
multiple sources of information—both bottom-up cues and top-
down factors—to powerfully interact and integrate over time to
produce stable person construals.

Structure of the Model

A diagram of the dynamic interactive model of person con-
strual appears in Figure 1. It provides a general description of
what specific instantiations of the model would involve, al-
though specific instantiations of the model need not (and often
will not) involve all elements appearing in Figure 1. The model
has a recurrent connectionist architecture that may be classified
as a stochastic interactive activation network (McClelland,
1991; Rumelhart et al., 1986). How the activation of a node
changes over time is determined by three factors: the node’s
prior activation, how quickly this activation decays, and the net
input of activation into the node from other nodes. We assume
that excitation and inhibition summate algebraically and that
the influence of input on a node is dependent on the node’s prior
history of activation. We also assume that processing is sto-
chastic rather than deterministic (see McClelland, 1991). On

SEX AGERACE EMOTION

FACE AND 
BODY CUES

HIGH LEVEL 
COGNITIVE 

STATES

STEREOTYPES

VOICE CUES

VISUAL INPUT AUDITORY INPUT

HIGHER LEVEL INPUT

HIGHER-ORDER LEVEL

STEREOTYPE LEVEL

CATEGORY LEVEL

CUE LEVEL

Figure 1. A general diagram of the dynamic interactive model of person construal. The Cue Level contains two
pools: a Face/Body Cues pool, which contains detectors for visual features, and a Voice Cues pool, which
contains detectors for auditory features. Cue nodes are directly stimulated by bottom-up input from visual and
auditory systems. The Category Level contains a number of competitive pools that correspond with social
category dimensions, such as Sex, Race, Age, and Emotion (although any number of dimensions may be used).
Each of these pools contain category nodes (e.g., Female, White, Young, Happy). The Stereotype Level contains
one pool that includes nodes for all category-related stereotypes (e.g., Aggressive). The Higher-Order Level
contains nodes corresponding with high-level cognitive states, such as task demands, motivations, prejudice,
goals, among others. Higher-order nodes are directly stimulated by input from higher levels of mental processing
(e.g., motivational systems or top-down attentional systems).
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each iteration, therefore, the input to every node is altered by
normally distributed random noise. Thus, the system’s activa-
tion states are inherently probabilistic.

Before the presentation of each stimulus, activations of all nodes
in the network are set equal to a resting activation value (zero), and
external inputs are presented to certain nodes for processing. When
at resting activation level, a node is inactive and therefore assumed
to not be represented in the processing landscape. Processing
occurs over a number of iterations. On each iteration, each node
computes its net input from the nodes connected to it on the basis
of their latest activation. Specifically, the net input to node i is

neti � �
j

wijoj � exti � ε�

where wij is the connection weight to node i from node j, oj is the
greater of 0 and the activation of node j, exti is any external input
to node i, and ε� is a small amount of normally distributed random
noise with mean 0 and standard deviation �. Once the net input
into all nodes has been computed, the activation of node i is
updated as follows:

If neti � 0:

�ai � I�M � ai�neti � D�ai � r�.

If neti � 0:

�ai � I�ai � m�neti � D�ai � r�,

such that M is the maximum activation, m is the minimum acti-
vation, r is the resting activation level, I is a constant that scales the
influence of external inputs on a node, and D is a constant that
scales a node’s tendency to decay back to rest. In all instantiations
of our model, the parameters are as follows: M � 1, m � –0.2, r �
0, I � 0.4, D � 0.1, and � � .01. These are standard values used
in connectionist networks of this type (McClelland, 1991; Rumel-
hart et al., 1986). Connection weights are specified for each
instantiation of the model later.

We assume that the person construal system is organized into
four interactive levels of processing: cue level, category level,
stereotype level, and a higher-order level. Within each of these
levels are one or several pools of nodes (see Figure 1). Most nodes
represent some feature or micro-hypothesis. For instance, the Race
pool would include a node for White category and another node for
Black category. Most of these pools are competitive in the sense
that all the nodes are mutually exclusive and related by inhibitory
connections. However, this is not necessarily the case for all pools.
For instance, in the Stereotypes pool would be many nodes for
different stereotypes. Some of these may inhibit one another (and
thus be competitive), such as Aggressive and Nice, whereas others
might have no relationship with one another, and some others
might excite one another, such as Aggressive and Dangerous.
Nodes that excite another node have a positively weighted con-
nection, nodes that do not influence another node have no connec-
tion (zero weight), and nodes that inhibit another node have a
negatively weighted connection.

Each node has a transient level of activation at every moment in
time. This level of activation corresponds with the strength of a
tentative interpretation or hypothesis that the node is represented in
the input (e.g., a face). Thus, in situations where a face is pre-

sented, the activation level of the Male category node could be said
to represent, at every moment in time, the strength of the hypoth-
esis that the face is male. A node whose activation level exceeds
a threshold excites other nodes with which it has an excitatory
connection and inhibits other nodes with which it has an inhibitory
connection. Importantly, most of the connections in our model are
bidirectional, producing feedback and making the network highly
interactive.

In simulations, the network’s ultimate response is given by the
response alternative associated with the node with the largest
activation in a pool after a given amount of iterations (once the
network has stabilized). The network’s reaction time is given by
the number of iterations it takes to for the winning node to reach
90% of its final activation state, which is then scaled by and added
with constants to approximate human reaction time data (in mil-
liseconds).

Cue level. The cue level contains a set of detectors for
visual features (facial and bodily cues) and auditory features
(vocal cues), which are directly stimulated by bottom-up sen-
sory information of another person. The cue level contains two
pools: a Face/Body Cues pool and a Voice Cues pool. Sensory
information of another person arriving in the visual system
(facial and bodily cues) directly activates nodes in the Face/
Body Cues pool. Sensory information arriving in the auditory
system (vocal cues) directly activates nodes in the Voice Cues
pool. Depending on specific modeling interests, these pools
have the flexibility to contain different arrangements of nodes.
For instance, the Face/Body Cues pool could contain one node
corresponding with all male facial features and another node
corresponding with all female facial features. However, differ-
ent strategies could be used. For instance, one node could
describe a specific feature (e.g., Long Hair or Dark Skin).
Similarly, the Voice Cues pool could contain a node corre-
sponding with all male vocal features or it could contain a node
corresponding with a specific feature such as Formant Ratio.

Nodes for cues that are along the same dimension (e.g., Male
Cues and Female Cues) are related by mutually inhibitory connec-
tions because they compete for the same visual/auditory input.
Thus, excitation of the Male Cues node will inhibit the Female
Cues node, and vice-versa. Nodes that have no direct relationship
with one another (e.g., Long Hair and Dark Skin) have no con-
nection between them. Cue nodes excite all category nodes con-
sistent with them and inhibit all of those inconsistent with them.
For instance, the cue node for male facial features would activate
the Male category node and inhibit the Female category node.
Similarly, the cue node for female facial features would activate
the Female category node and inhibit the Male category node. Note
that the connections between cue nodes and category nodes are
bidirectional. Thus, cue nodes both influence and are influenced by
category nodes. This produces feedback and a recurrent flow of
activation, as discussed earlier.

Category level. The category level contains a number of
competitive pools that correspond with social category dimen-
sions. For instance, in Figure 1, we have four pools: Sex, Race,
Age, and Emotion. Any number of different categories could be
used, however (e.g., Social Class, Sexual Orientation, Occupa-
tion, Ethnicity). These could include categories that are rela-
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tively static (e.g., sex) as well as categories that are dynamic
(e.g., emotion).2

Each of these pools contains category nodes. The pool for
Sex would include a Male node and a Female node; the pool for
Race would include, for example, a White node, a Black node,
and an Asian node. Nodes within a pool compete with one
another through mutual inhibition. In the broad model depicted
in Figure 1, bidirectional connections exist between all four of
the category pools. This is not required for all instances of the
model, but they are depicted because in some instances category
nodes may be directly related to one another. For instance, if
perceivers have learned in their lifetime that women tend to be
happy and men tend to be angry (see Fabes & Martin, 1991),
then the node for Male (in the Sex pool) may have a bidirec-
tional excitatory connection with Angry (in the Emotion pool).
Similarly, the node for Female may have a bidirectional excit-
atory connection with Happy.

Category nodes receive input from cue nodes (which directly
receive bottom-up sensory information), and they also send feed-
back to cue nodes. Category nodes activate stereotype nodes (e.g.,
Male excites Aggressive and Female excites Docile), and they also
receive feedback from these nodes as well. Thus, not only will the
category node, Male, tend to activate the stereotype node, Aggres-
sive, but activation of Aggressive will tend to activate the Male
category. This type of feedback is important, and we discuss it in
detail later. Finally, category nodes may activate and be activated
by higher-order nodes.

Stereotype level. The stereotype level contains one pool
including nodes for all category-related stereotypes (e.g., Aggres-
sive or Docile). Within this, nodes could mutually inhibit or
mutually excite one another. For instance, Aggressive and Dan-
gerous would mutually excite one another, but Aggressive and
Docile may mutually inhibit one another. Stereotype nodes receive
input from category nodes and send feedback to them. Stereotype
nodes also receive input from higher-order nodes and send feed-
back to them as well.

Higher-order level. Nodes in this level may correspond with
any number of high-level cognitive states, depending on what is
being modeled. They could include factors such as prejudice,
motivations, processing goals, task demands, among others. We
assume that these nodes receive direct input from higher levels of
mental processing (e.g., motivational systems or top-down atten-
tional systems). Higher-order nodes may influence category nodes
or stereotype nodes, or both. Moreover, they may have a bidirec-
tional connection with these nodes or simply a unidirectional
top-down connection only.

For instance, higher-order nodes could be used to model high-level
task demands in a particular context. One higher-order node could
denote Sex Task Demand, and another node could denote Race Task
Demand. During a sex categorization task, the higher-order Sex Task
Demand node would be directly activated by higher level input (e.g.,
top-down attentional systems, driven by memory of task instructions).
Activation of this higher-order node would then have top-down ex-
citatory connections with sex-related category nodes (Male and Fe-
male) but would have top-down inhibitory connections with race-
related category nodes (White, Black, Asian), because the task
demand compels attention to sex and away from race. As such,
attentional effects due to task demands (e.g., placing attention on sex
and away from race in a sex categorization task) emerge out of the

flows of activation between these higher-order task-demand nodes
and the category nodes, consistent with other computational models
accounting for task demands (e.g., Cohen & Huston, 1994). This is
one example of how the higher-order level could be used to model
top-down effects from internal cognitive states, such as task demands,
memory, affect, motivations, expectations, situational context, among
others.

An Example

We now consider a specific instantiation of the model involving
the category and stereotype activation of sex and race (see Figure
2). We only use a select amount of the pools from the general
model (see Figure 1). Namely, we only use the Face/Body Cues
pool, the Sex category pool, Race category pool, Stereotypes pool,
and High-Level pool. Solid-line connections with arrows are ex-
citatory (positive weight), and dashed-line connections with dots
are inhibitory (negative weight). Arrows and dots indicate the
direction of influence (in this instantiation, all influences are
bidirectional).

Let us consider the dynamics of the network when it is presented
with a face. Visual input of the face directly activates nodes in the cue
level. For simplicity, we use individual cue nodes to represent all
facial features associated with a category. Thus, there is a cue node for
Male Cues, Female Cues, Black Cues, White Cues, and Asian Cues.
The cue nodes specifying a target’s sex (Male Cues and Female Cues)
nodes mutually inhibit one another, and the cue nodes specifying a
target’s race (Black Cues, White Cues, and Asian Cues) also mutually
inhibit one another. Cue nodes excite category nodes consistent with
them and inhibit category nodes inconsistent with them. They also
receive feedback from category nodes. At the same time that cue
nodes receive input from visual processing, higher level input directly
activates higher-order nodes. Here, we use one node to denote a
task-induced state that compels excitation of the sex-category dimen-
sion and another node to denote a task-induced state that compels
excitation of the race-category dimension. The higher level input in
this case would originate from top-down attentional systems driven by
memory of the task instructions. These higher-order Sex Task De-
mand and Race Task Demand nodes mutually inhibit one another.
Moreover, they excite category nodes consistent with them, inhibit
category nodes inconsistent with them, and are also activated by
category nodes as well. Thus, activation of the Race Task Demand
node would facilitate activation of race categories (Black, White,
Asian) and inhibit activation for sex categories (Male, Female), and
vice-versa for the Sex Task Demand node.

As category nodes are activated by cue nodes and higher-
order nodes, they also excite stereotype nodes consistent with
them and inhibit stereotype nodes inconsistent with them. Here
we use two stereotype nodes: Aggressive and Docile. These
nodes mutually inhibit one another. Further, as category nodes
excite and inhibit stereotype nodes, they are also updated by
feedback from the stereotype nodes. Many more stereotype
nodes could be included in the model to capture the full gamut

2 Although a dynamic characteristic, such as emotion, changes over
time, it exhibits categorical perception effects similar to those of static
characteristics, and the perception of emotion is a form of perceptual
categorization (Calder, Young, Perrett, Etcoff, & Rowland, 1996; Etcoff &
Magee, 1992).
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of a category’s stereotype contents, but for simplicity we use
Aggressive as one example of male-related and Black-related
stereotypes and Docile as one example of female-related and
Asian-related stereotypes. We later describe simulations of this
model that can predict several phenomena found in human
perceivers. First, however, we describe some important prop-
erties of the general model (see Figure 1).

Properties of the Model

Dynamic, probabilistic, and mutually interactive represen-
tations. The representations in our model are interactive,
rather than rigid and independent. This is because our model
assumes the person construal system experiences large ongoing
cycles of interaction between each representation in the system.
Thus, the activation of one representation influences all other
representations in the system, as one node’s activation influ-
ences the activation of all other nodes. For example, consider
the presentation of a male face. Direct stimulation of the Male
Cues node will facilitate the Male category, which will inhibit
the Female category, which will inhibit the stereotype, Docile,
in turn inhibiting the category, Asian, in turn facilitating the
category, Black, in turn facilitating the stereotype, Aggressive,
which facilitates the category, Male, which facilitates the Male
Cues node, and so on and so forth. Thus, the system is highly
interactive. These influences gradually taper off as all nodes in
the system come to settle into an attractor state. Before the

system stabilizes, however, representations are in continuous
interaction over time, not encapsulated and independent.

The representations in our model are dynamically and proba-
bilistically reconstructed in every new instance, rather than
remaining static and independent. Their real-time development
is in continuous interaction with other activations across the
system, both dynamically influenced by these activations and a
source of influence over them. For example, there is no stand-
still, discrete symbol-like representation of the “male” category.
Rather, the system will gravitate toward an attractor state that
involves stable, strong activation of Male and weak activation
of Female, but this state is not a discrete symbol identically
activated every time the system encounters a male target. In-
stead, the system’s prior history, external inputs, simultaneous
activations, internal constraints, and a bit of random noise all
work to determine the probabilistic activation of the Male and
Female categories. Thus, the system may frequently visit a
similar attractor state involving strong activation of Male and
weak activation of Female every time it encounters a male
target. However, this is a dynamically reconstructed state of
activation that could only approximate an idealized, linguisti-
cally identifiable representation of the “male” category (Spivey
& Dale, 2006). Even if the system did reach, for example, some
idealized attractor state involving 100% Male and 0% Female,
the system does not have much time to dwell there because the
ongoing accrual of new sensory information (e.g., facial, vocal,
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Figure 2. An instantiation of the model, used for simulations to account for Phenomena 1 and 3 (connection
weights in Appendix A).
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bodily cues) already begins pushing the system into different
attractor states to which it must start gravitating. Thus, our
model assumes that internal representations of categories and
stereotypes are dynamic, probabilistic, and mutually interac-
tive.3

Perceiving in a noisy social environment and partial fit. A
noteworthy property of a dynamic interactive model is that exter-
nal stimuli do not need to directly contain all the perceptual cues
required to correctly identify a target’s characteristics. Instead, just
a few cues can lead the system to generate automatic hypotheses
about the stimulus and, under certain conditions, to “run” with
those hypotheses. For instance, a fleeting glimpse of a person’s
face at an obscure angle on a busy street flooded with other people
may not directly contain all the cues necessary to discern with
confidence whether the person is a man or woman. Nonetheless,
the meager amount of cues that are processed by the visual system
will activate relevant cue nodes, which will thereafter place excit-
atory and inhibitory pressures on category nodes. If these pressures
are sufficient, and if network constraints permit, the Male and/or
Female categories will be pushed above their resting level. If both
categories are pushed above their resting level, they will compete
with one another to stabilize onto one. Random noise could easily
bias the competition toward one category or the other, given the
ambiguity in the bottom-up input. If just enough perceptual cues
were processed, however, and one category received greater exci-
tation over the other, the system could settle into the correct
interpretation. Thus, a mere partial fit in a target’s available
perceptual cues may be sufficient for the system to generate
automatic hypotheses and then potentially commit to them.

Our social environment is rife with these situations involving
partial fit. On a busy street, just enough visual information of a
target’s face might activate relevant cue nodes that then put slight
pressure on category nodes, in turn triggering “best guess” par-
tially active representations of the target’s category memberships.
As one’s eyes rapidly move on to the next passing face, a similar
process would occur. Indeed, previous work has shown that min-
imal, isolated category-specifying perceptual cues (e.g., long hair
or short hair) are sufficient to trigger category representations (e.g.,
female or male, respectively; Macrae & Martin, 2007).

Partial parallel activation and dynamic competition. A
central feature of a dynamic interactive model of person construal
is that processing involves dynamic competition between partially
active and parallel representations. This is due to the continuous
dynamics inherent to the person construal system. Perceptual pro-
cessing triggers partially active category representations (e.g.,
“that’s [tentatively] a man” and “that’s [tentatively] a woman”),
which continuously compete. Ongoing changes of partially active,
competing category representations, in turn, continuously update
stereotype activation and higher-order states (while also returning
feedback to lower levels of processing). Eventually, these partially
active category representations settle into an attractor state, which
in experimental settings (e.g., a sex categorization task) often
results in a single, stable categorical outcome (e.g., “that’s a
man!”).

Such continuous dynamics are inherent in our model’s structure.
For instance, when a face is presented to the network, its visual
input begins activating cue nodes, which in turn places excitatory
pressures on category nodes consistent with those cues and inhib-
itory pressures on category nodes inconsistent with them. Impor-

tantly, these pressures operate gradually and continuously over
time. On each iteration, activated cue nodes update the activation
of category nodes by either strengthening or weakening them. At
the same time, category nodes are also strengthened or weakened
by higher-order nodes and stereotype nodes. They also engage in
mutual inhibition with other category nodes (e.g., Male and Fe-
male category nodes compete for activation). Thus, for instance, it
might take 150 iterations for the Male category node to achieve its
maximum asymptotic level of activation. However, for the vast
majority of processing (iterations) prior to that, the Male category
would be partially active and continuously evolving over time.
During this evolution, the Male category would be continuously
incorporating excitatory and inhibitory inputs from a variety of
lower nodes (cue nodes), higher nodes (stereotype and higher-
order nodes), and other category nodes (e.g., Female category),
while also, in turn, feeding activation back to those nodes as well.

Further, these continuously fluctuating and partially active
representations are activated in parallel. For instance, imagine
that the face of a feminine-looking man (e.g., .55 male, .45
female) is presented to the network. Visual input will activate
the node for Male Cues and also the node for Female Cues.
Activation of cue nodes will begin placing excitatory and
inhibitory pressures on category nodes. In this case, both the
Male and Female category nodes will rise above their resting
level and become partially active. These parallel and partially
active category representations will then compete with one
another through mutual inhibition. For the system to settle into
a stable state (e.g., for sex categorization, either predominantly
Male being active or predominantly Female being active), the
parallel and partially active Male and Female category nodes
must engage in a dynamic competition, with one gradually
gaining activation and the other gradually dying off, as they
strangle each other’s activation through inhibition. In such a
case, the system is simultaneously attracted to be in two dif-
ferent states (i.e., attractor states): one state involving �100%
Male/�0% Female and another involving �0% Male/�100%
Female. Such states are highly stable (leading the system to be
attracted to them), whereas a state such as �55% Male/�45%
Female is highly unstable. Although in most cases the system

3 A caveat is due regarding our model’s use of localist representations
(i.e., that each node corresponds with one linguistically identifiable repre-
sentation, e.g., male category). Although many connectionist models use
distributed representations, there are some advantages to using localist
representations. In contrast to localist models, distributed models map a
single identifiable representation (e.g., male category) not to a single local
node but to a particular pattern of activation distributed across several
nodes. Indeed, we acknowledge that using localist representations is one
step further away from neural plausibility. It is certainly our assumption
that representations in the human brain are inherently distributed, with any
identifiable representation (e.g., male category) corresponding to a pattern
of firing rates—or population code—involving a large number of neurons
(Olshausen & Field, 2004; Rumelhart et al., 1986). However, localist
representations provide reasonable approximations of distributed represen-
tations while also being more intuitive to understand for the purposes of
modeling (Grainger & Jacobs, 1998; Smolensky, 1989). Thus, we employ
localist representations here for the sake of simplicity, but we assume that
these are only useful approximations of actual distributed representations
found in neural systems.
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would come to settle into an attractor state involving �100%
Male/�0% Female activation, thereby achieving a male cate-
gorization, along the way it could not help but continually
meander near the other attractor (�0% Male/�100% Female)
while the competition is still resolving itself. In short, a dy-
namic interactive model of person construal assumes many
representations are partially active in parallel. Further, conflicts
within the same pool (e.g., sex categories; race categories) are
resolved through dynamic competition, where all nodes within
the pool mutually inhibit one another.

Overview

Across five simulations, we show how a dynamic interactive
model naturally accounts for a wide range of person construal
phenomena. First, we show how it replicates effects of continuous
dynamics, partial parallel activation, and dynamic competition in
categorization and stereotyping (Phenomenon 1). We then show
how it replicates effects of top-down influences of high-level
cognitive states and stereotype activation on categorization (Phe-
nomena 2 and 3) as well as bottom-up influences on categorization
due to shared perceptual features (Phenomenon 4). Finally, we
show how the model replicates contextual and cross-modal effects
on categorization (Phenomenon 5). These recently documented
phenomena provide converging evidence for our theory that per-
son construal is a dynamic interactive process. The simulations
that follow will show how our model captures this process.

Dynamics of Social Categorization and Stereotyping

Faces have been found to trigger simultaneously and partially
active sex categories, race categories, and stereotypes, which grad-
ually resolve into stable categorical perceptions through dynamic
competition. To capture these simultaneously conflicting represen-
tations, the person construal process has been examined online by
recording participants’ computer mouse movements en route to
responses on the screen. For instance, in one series of studies,
participants categorized the sex of male and female faces by
moving the computer mouse from the bottom-center of the screen
to either the top-left or top-right corners, which were marked
“male” and “female” (Freeman et al., 2008). Participants were
asked to click on the correct sex category. Meanwhile, their mouse
movements were recorded. When categorizing sex-atypical
male and female faces (those that contained partial cues of the
opposite sex), participants’ mouse movements were continuously
attracted toward the opposite sex-category (on the opposite side of
the screen). For instance, when categorizing a male face that
contained some feminine features, participants’ mouse movements
gravitated a bit closer to the “female” response than when catego-
rizing a male face without feminine features. This indicated that
sex categorization involved partially active category representa-
tions (male and female), which simultaneously competed over time
to gradually stabilize on one categorical outcome.

Such a pattern of results was also obtained for race categoriza-
tion (Freeman, Pauker, et al., 2010) and stereotype activation
(Freeman & Ambady, 2009). The main mouse-tracking results
from the stereotype activation study appear in Figure 3. Partici-
pants were presented with sex-typical and sex-atypical faces and
were instructed to move the mouse and click on the adjective that

was stereotypically appropriate for the face (one was always
masculine and one always feminine). For sex-atypical faces (which
bore a mixture of masculine and feminine cues), the mouse was
continuously attracted toward the opposite sex stereotype (e.g.,
“docile” for a male target) before settling into the correct stereo-
type (e.g., “aggressive” for a male target), as seen in Figure 3. This
finding provided evidence that faces trigger parallel and partially
active stereotypes tied to alternate social categories. These stereo-
types then dynamically compete over time to settle onto one
(Freeman & Ambady, 2009). Below, we demonstrate how a dy-
namic interactive model of person construal naturally accounts for
these findings. We ran simulations using the instantiation of the
model introduced earlier (see Figure 2).

Phenomenon 1: The Partial and Parallel Activation of
Social Categories and Stereotypes

First, we consider how the model categorizes faces by sex. We
consider categorization of two types of targets: a sex-typical White
male face and a sex-atypical White male face. Connection weights
for this instantiation of the model (see Figure 2) are provided in
Appendix A.4

Because this is a sex categorization task and the demands of the
task compel attention to sex, higher level input would directly
activate the Sex Task Demand node. We set the higher level input
into the Sex Task Demand node at .9 and higher level input into the
Race Task Demand node at .1 (see Footnote 4). This simulates the
task context of sex categorization, where perceivers would be
focusing on targets’ sex over their race. This thus facilitates
activation of Male and Female category nodes, and inhibits acti-
vation of Black, White, and Asian nodes. In the cue level, the Male
Cues and Female Cues nodes both receive direct input from visual
processing of the face. To simulate the presentation of a sex-
typical White male face, we set visual input into the Male Cues
node at .95 and visual input into the Female Cues node at .05.
Thus, this face is inherently 95% masculine and 5% feminine.
Because the face is White, we set visual input into the White Cues
node at .95 and visual input into the Black Cues and Asian Cues
nodes at .025 each. We ran the simulation 100 times each time for
150 iterations, and we plotted the average activation level of each
category node over time, appearing in Figure 4A.

The presentation of a sex-typical White male face sets a process
into motion, in which visual processing of the face directly activates
cue nodes. Cue nodes inconsistent with one another, such as the Male
Cues and Female Cues nodes, compete for the visual input. The
activation of cue nodes, in turn, immediately places excitatory and
inhibitory pressures on category nodes (see Figure 2). In this case, the
highly activated Male Cues node places strong excitatory pressure on
the Male category node and inhibitory pressure on the Female cate-

4 In all simulations, we set connection weights and input values according
to our intuitions regarding stimulus and task features. It may be possible in
future work to derive these values empirically. However, we are confident
given previous studies that our parameters are in accord with participant
judgments and task features in these contexts, and we chose parameters that
best reflect these intuitions. In this sense, the current simulations serve as
existence proofs for the kind of dynamic interactive processing that may take
place during construal, though we acknowledge that future work may advance
these simulations by deriving network parameters empirically.
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gory node. The highly activated White Cues node places strong
excitatory pressure on the White category node and inhibitory pres-
sure on the Black and Asian category nodes. At the same time, the
higher-order Sex Task Demand node places excitatory pressures on
the Male and Female category nodes and inhibitory pressures on the
Black, White, and Asian category nodes. These simultaneous pres-
sures cause the activation levels of some category nodes to be pushed
above their resting levels, whereas others are inhibited and pushed
below their resting levels. Excitatory pressure from both the Male
Cues node and the higher-order Sex Task Demand node leads the
Male category node to rise above its resting level. Positive feedback
is then produced between these nodes, which causes the Male cate-
gory node to rapidly gain activation until gradually settling into a
stable state. Because a small amount of feminine features were pre-
sented to the network (the Female Cues node was initialized with .05
visual input), the Female category node also becomes slightly active
for a very brief moment early on and then succumbs to strong
inhibition from the Male Cues node and the Male category node,
resulting in it being pushed below its resting level. Excitatory pressure
from the White Cues node leads the White category node to rise above
its resting level, but the White category node is also inhibited by the
Sex Task Demand node. This leads the White category node to gain

a meager amount of activation until eventually settling into a stable
state (and thus Male is more strongly active than White). Finally,
inhibitory pressures from the White Cues node and the Sex Task
Demand node lead the Black and Asian category nodes to be rapidly
pushed below their resting levels. These dynamics are apparent in
Figure 4A.

Note how each category node gradually works over time to
settle into a stable attractor state, such that its activation reaches
some asymptotic level and tapers off. This stable state would
correspond with the fully confident categorization of the target as
male. However, before that 100% confident categorization is
achieved, bear in mind that partial, tentative evidence for that
categorization actually accumulates gradually over time (the dy-
namics of the Male category activation).

Now let us consider how the person construal system settles into a
stable state when presented with a sex-atypical White male face in a
sex categorization task. To simulate this, we set visual input into the
Male Cues node at .55, input into the Female Cues node at .45, input
into the White Cues node at .95, and input into the Black Cues and
Asian Cues nodes at .025 each. As done previously, we set higher
level input into the Sex Task Demand node at .9 and input into the
Race Task Demand node at .1. This simulates attention on sex

Figure 3. In one study, Freeman and Ambady (2009) found that when stereotyping sex-atypical faces (e.g., a man
with slight feminine cues), participants’ computer mouse trajectories were continuously attracted to the stereotype of
the opposite sex (e.g., docile) before settling into their ultimate response (e.g., aggressive). The figure depicts mean
mouse trajectories (aggregated across male and female targets). The feminine and masculine stereotype labels
appeared in the top -left and top-right corners of the screen (docile and aggressive, shown here, are examples of the
stereotype labels that were displayed). In this figure, trajectories for all targets were remapped rightward, with the
opposite-sex stereotype on the left and the stereotype label consistent with the target’s sex on the right. Sample male
face stimuli are also displayed. A typical male face is shown on the right, next to the mean trajectory for typical targets.
Its atypical (feminized) counterpart is shown on the left, next to the mean trajectory for atypical targets. During an
actual trial, a single face was centered at the bottom of the screen. The bar graph shows trajectories’ maximum
deviation toward the opposite-sex stereotype from a direct line between trajectories’ start and end points, separately
for typical and atypical targets (error bars denote standard errors of the mean). From “Motions of the Hand Expose
the Partial and Parallel Activation of Stereotypes,” by J. B. Freeman and N. Ambady, 2009, Psychological Science,
Vol. 20, p. 1185. Copyright 2009 by Wiley-Blackwell. Adapted with permission.
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induced by the task context of sex categorization. The simulation was
run 100 times, and the averaged activation level of each category node
over 150 iterations appears in Figure 4A.

The activated Male Cues node begins exciting the Male category
and inhibiting the Female category, whereas the Female Cues node
begins exciting the Female category and inhibiting the Male category
(see Figure 2). The Male Cues and Female Cues nodes also begin
inhibiting one another as well. The highly activated White Cues node
excites the White category and inhibits the Black and Asian catego-
ries. At the same time, the higher-order Sex Task Demand node
excites the Male and Female categories and inhibits the Black, White,
and Asian categories. The excitatory pressure from both the Male
Cues node and the higher-order Sex Task Demand node leads the
Male category to rise above its resting level. The excitatory pressure
from the Female Cues node and the Sex Task Demand node also leads
the Female category to rise above its resting level. Pressures from the
cue nodes and higher-order nodes cause the White category to gain a
meager amount of activation and the Black and Asian categories to be
rapidly pushed below their resting levels. With the Male and Female
categories now simultaneously activated, they begin competing with
one another through mutual inhibition. Over time, this mutual inhi-
bition between competing Male and Female categories, in addition to
feedback with the cue nodes, leads the Female category to gradually
decay while the Male category gradually rises in activation until a
stable state is achieved. This results in the Male category winning the
competition, whereas the Female category dies off and stabilizes on a
very weak level of activation. Thus, simultaneously and partially
active sex categories dynamically compete over time to settle onto a
single categorical outcome (in this case, a male categorization). In-
deed, by tracking computer mouse trajectories, exactly such tempo-
rally dynamic competition has been shown to underlie sex and race
categorization, as described earlier.

The different stable states that the system settles into in construing
a sex-typical versus a sex-atypical male face are noteworthy. When
presented with a sex-typical male face, the Male category stabilized at
.52 activation and the Female category at –.03 activation. When

presented with a more ambiguous sex-atypical male face, however,
the Male category stabilized at a weaker level of activation (.48) and
the Female category at a relatively stronger level of activation (.02).
Thus, although the system took an ambiguous mixture of masculine
and feminine facial cues and, over time, slotted it into a single
categorical outcome (male) through dynamic competition, the out-
come is nonetheless graded. A sex-typical male face resulted in
stronger activation of the Male category and weaker activation of the
Female category, whereas a sex-atypical male face resulted in less
strong activation of the Male category and less weak activation of the
Female category. Indeed, recent findings have suggested that such
steady-state category representations are graded (Blair, Chapleau, &
Judd, 2005; Blair, Judd, & Fallman, 2004; Blair, Judd, Sadler, &
Jenkins, 2002; Freeman et al., 2008; Freeman, Pauker, et al., 2010;
Locke, Macrae, & Eaton, 2005; Maddox & Gray, 2002). As the
presence of category-specifying facial cues increase (i.e., become
more prototypical of a social category), steady-state category repre-
sentations increase in strength. That representations of social catego-
ries are inherently graded has been additionally suggested by neuro-
imaging work (Freeman, Rule, Adams, & Ambady, 2010). Further,
once triggered these graded representations thereafter influence eval-
uation and behavior in graded fashion as well (Livingston & Brewer,
2002). For instance, in court trials, individuals with more Black-
specifying features are punished more severely and more likely to be
sentenced to death (Blair, Judd, & Chapleau, 2004; Eberhardt, Davies,
Purdie-Vaughns, & Johnson, 2006). Thus, a dynamic interactive
model naturally accounts for such findings.5

5 Whereas it is sometimes acknowledged in the literature that faces
trigger category representations that are graded (Locke et al., 2005), it is
often not considered that alternate categories may be partially active at the
same time and that these partially active representations are graded as well.
For instance, as a face becomes less prototypically male (and starts fea-
turing some feminine cues), our model predicts that not only will a

Figure 4. (A) The activation level of the Male and Female category nodes as a function of time (iterations)
following the presentation of a sex-typical male face (solid lines) and sex-atypical male face (dashed lines). (B) The
activation level of the Aggressive (male-related stereotype) and Docile (female-related stereotype) nodes are plotted
as a function of time (iterations) following the presentation of a sex-typical male face (solid lines) and sex-atypical
male face (dashed lines).
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What are the implications of the partial and parallel activation
of social categories for the activation of stereotypes? Figure 4B
shows the level of activation of the masculine stereotype, Aggres-
sive, and the feminine stereotype, Docile (averaged from 100
simulations), across 150 iterations when the network is presented
with a sex-typical versus a sex-atypical White male face. As
category nodes become activated through excitatory pressures of
cue nodes and higher-order nodes, they immediately start placing
excitatory and inhibitory pressures on stereotype nodes. For a
sex-typical male face, activation of the Male category in turn
activates the Aggressive stereotype and inhibits the Docile stereo-
type. Positive feedback between the Aggressive stereotype and
Male category then leads the system to rapidly converge on a
stable state involving strong activation of the Aggressive stereo-
type and the Docile stereotype pushed below resting level. When
presented with a sex-atypical male face, however, the activated
Male category node excites the Aggressive stereotype and inhibits
the Docile stereotype. However, the simultaneously activated Fe-
male category also excites the Docile stereotype and inhibits the
Aggressive stereotype. With both masculine and feminine stereo-
types activated, they then compete with one another through mu-
tual inhibition. Thus, as seen in Figure 4B, a sex-atypical male face
leads to the partial and parallel activation of masculine (Aggres-
sive) and feminine (Docile) stereotypes, which dynamically com-
pete until the system achieves a stable state. Indeed, precisely this
effect has been empirically demonstrated in human perceivers
(Freeman & Ambady, 2009).

In summary, our model accounts for the partial and parallel
activation of social categories and stereotypes, as well as the
dynamic competition required to resolve these simultaneously
conflicting activations into stable person construals.

Top-Down Interactivity in Social Categorization

A dynamic interactive theory of person construal assumes that
processing in the category level and stereotype level is interactive,
such that, beyond categories obviously feeding forward activation
to stereotypes, stereotypes can also feed back activation to cate-
gories, thereby exerting top-down pressure on categorization. Re-
cent studies have highlighted several top-down effects on social
categorization.

For instance, explicitly labeling a target as “White” or “Black”
influences the perception of faces, and this is more strongly the
case for perceivers who believe race is fixed rather than malleable

(Eberhardt et al., 2003). The perception of a face’s race and the
subsequent memory of it is also contingent on perceivers’ moti-
vation to include ambiguous group members into their in-group or
to exclude them from it (Castano, Yzerbyt, Bourguignon, & Seron,
2002; Pauker et al., 2009).

Racial prejudice has numerous top-down effects on race per-
ception. For instance, it moderates the manner by which facial
emotion (angry or happy) shapes processing of race (Hugenberg &
Bodenhausen, 2004). Moreover, high levels of prejudice lead to
less efficient categorizations of racially ambiguous faces (Blasco-
vich, Wyer, Swart, & Kibler, 1997) and a bias to categorize
racially ambiguous faces as part of the out-group rather than
in-group (Pettigrew, Allport, & Bartnett, 1958). How much an
individual identifies with his or her in-group also exerts an influ-
ence on race categorization. For instance, individuals who strongly
identify with their in-group are more likely to exclude racially
ambiguous faces from their in-group and are less efficient in race
categorization (Castano et al., 2002).

In categorizing a face’s emotion, top-down knowledge (e.g.,
knowing that a target is watching a horror film vs. comedy show)
is readily utilized to resolve ambiguous fearful-happy emotional
expressions (Trope & Cohen, 1989). Other top-down knowledge,
such as an explicit label, also constrains the activation of emotion
categories. In one study, participants encoded emotionally ambig-
uous faces while given an explicit label such as “angry” or
“happy” (Halberstadt & Niedenthal, 2001). Faces that were paired
with an angry label were subsequently remembered as more angry,
just as faces paired with a happy label were remembered as more
happy. Further data ruled out the possibility that these influences
of top-down semantic context were due to postperceptual pro-
cesses such as memory reconstruction (Halberstadt, 2005).

More recently, Halberstadt, Winkielman, Niedenthal, and Dalle
(2009) used facial electromyography to demonstrate that explicit
labels of “angry” or “happy” induced spontaneous emotion-
specific mimicry during online face processing and that electro-
myography activity predicted subsequent memory bias. This sug-
gests that activation of emotion categories is flexibly shaped by
top-down cues even early in processing. One’s social expectations
also exert a top-down influence on the perception of facial emo-
tion. For instance, women who were stigma conscious (i.e., who
chronically expect to be rejected by men) reported seeing a greater
amount of contempt on male faces than female faces, in contrast to
women who were low in stigma consciousness (Inzlicht, Kaiser, &
Major, 2008). The perception of facial emotion can also be con-
strained by individuals’ emotional states. For instance, participants
who were induced to feel happy reported seeing happiness for a
longer period of time when viewing dynamic face morphs transi-
tioning between happiness and sadness (Niedenthal, Halberstadt,
Margolin, & Innes-Ker, 2000). In short, a growing body of re-
search finds that high-level factors can exert a variety of top-down
influences on the perception of other people.

Phenomenon 2: Top-Down Effects of Racial Prejudice
and Facial Emotion on Race Perception

An excellent illustration of top-down interactivity in person
construal is the influence of racial prejudice and emotion category
on race perception. As described earlier, Black individuals are
stereotyped as hostile (Devine, 1989). Hugenberg and Boden-

representation of the male category become weaker but also that a simul-
taneously active representation of the female category will become stron-
ger. This is evident in the results of our simulation (see Figure 4A) and also
with experimental investigations. For instance, prior work has found that as
the amount of Black-specifying features on faces that were ultimately
judged as White linearly increases, the hand’s simultaneous attraction
toward the “Black” response (before settling into the “White” response)
increases as well. Similarly, as the amount of White-specifying features on
faces that were ultimately judged as Black linearly increases, the hand’s
simultaneous attraction toward the “White” response (before settling into
the “Black” response) increases (Freeman, Pauker, et al., 2010). Thus, as
perceptual cues of an alternate social category increase, the partial activa-
tion of that alternate category increases as well because of the dynamic
competition inherent to social categorization.
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hausen (2004) reasoned that this “Black is hostile” stereotype
would lead perceptions of race to be susceptible to influences of
emotion category. Specifically, they argued that faces should be
more likely to perceived as Black when displaying a hostile
emotional expression (e.g., anger) relative to a nonhostile one
(e.g., happy). Further, because individuals with higher levels of
racial prejudice more readily activate and apply stereotypes
(Lepore & Brown, 1997; Wittenbrink, Judd, & Park, 1997), this
stereotype-mediated race–emotion interaction should be stronger
in high-prejudice individuals (who would more readily activate the
“Black is hostile” stereotype) and should be weaker in low-
prejudice individuals. Clearly, emotion category would not dra-
matically alter the perception of race on faces for which race is
quite obvious. However, when racial cues are substantially ambig-
uous, this bottom-up ambiguity opens up the opportunity for
top-down factors (e.g., stereotypes) to exert a strong bias on
race-category activation. Indeed, Hugenberg and Bodenhausen
found that, for high-prejudice individuals, racially ambiguous
faces were more likely to be categorized as Black (relative to
White) when displaying anger (hostile emotion) than when dis-
playing happiness (nonhostile emotion). For low-prejudice indi-
viduals, however, emotion category did not reliably modulate race
categorization (presumably because the “Black is hostile” stereo-
type was not substantially activated for low-prejudice individuals).
This finding is a compelling example of the interactive nature of
person construal, showing how activation of one category dimen-

sion (emotion) fluidly interacts with another category dimension
(race), and how these cross-category interactions may be driven by
higher-level social cognitive processes, such as stereotype activa-
tion and prejudice.

To account for these effects, we developed another instantiation
(see Figure 5) of our general model (see Figure 1). Connection
weights are provided in Appendix B. As in the previous instanti-
ation of the model (see Figure 2), for simplicity, we use individual
cue nodes to represent all facial features associated with a cate-
gory. The cue, category, and higher-order levels are modeled in a
similar fashion as the previous instantiation, except here with race
and emotion. In this instantiation, however, there is a third higher-
order node: Racial Prejudice. This node is a simplified way of
simulating the complex set of memory and affect structures in-
volved in racial prejudice. For high-prejudice individuals, this
node will be strongly activated; for low-prejudice individuals, this
will be weakly activated. This Racial Prejudice node has unidirec-
tional excitatory connections with two stereotype nodes: the Hos-
tile Black node and the Neutral White node. The Hostile Black
node represents the “Black is hostile” stereotype, and the Neutral
White node represents the “White is neutral [nonhostile]” stereo-
type. Thus, for high-prejudice individuals, the Racial Prejudice
node will be strongly activated, which will excite the Hostile Black
and Neutral White stereotype nodes. For low-prejudice individu-
als, however, the Racial Prejudice node will be weakly activated,
and in turn, the stereotype nodes will be considerably less active
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Figure 5. An instantiation of the model, used for simulations to account for Phenomenon 2 (connection weights
in Appendix B).
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(because low-prejudice individuals are less likely to activate ste-
reotypes; Lepore & Brown, 1997; Wittenbrink et al., 1997). The
stereotype nodes are excited by the Racial Prejudice node (and also
excited by category nodes consistent with them and inhibited by
category nodes inconsistent with them).

Let us consider how the system would categorize the race of
racially ambiguous angry and happy faces, both for high-prejudice
and low-prejudice individuals. To simulate a race categorization
task, we set higher level input into the Race Task Demand node at
.9 and input into the Emotion Task Demand node at .1. We ran four
race-categorization simulations: a high-prejudice individual cate-
gorizing a racially ambiguous angry face and happy face, and a
low-prejudice individual categorizing a racially ambiguous angry
face and happy face. We ran each simulation 100 times. Each time,
we set visual input at .5 for the White Cues node and at .5 for the
Black Cues node, thus making the faces perfectly ambiguous with
respect to bottom-up racial cues. For angry faces, we set visual
input at .9 for the Angry Cues node and at .1 for the Happy Cues
node, and vice-versa for happy faces. For high-prejudice individ-
uals, we set higher level input at 1 for the Racial Prejudice node.
This is a simplistic simulation of the activation of complex mem-
ory and affect structures that mediate an individual’s racial prej-
udice. In contrast, for low-prejudice individuals, we set higher
level input at 0 for this node. After 150 iterations, we selected the
race-category node with the highest activation as the network’s
categorization response.

Figure 6 shows the proportion of times the network categorized
the face as Black, separately for a high-prejudice and a low-
prejudice individual, and separately for angry and happy faces. For
happy faces, the network was 50% likely to categorize the face as
Black for a low-prejudice individual and 48% likely for a high-
prejudice individual. Thus, happy race-ambiguous faces appeared
to be categorized as Black or White due to random noise (50%
chance), and uninfluenced by level of prejudice. In contrast, the
network was biased toward categorizing angry race-ambiguous
faces as Black, with a low-prejudice individual having a greater

than chance likelihood of Black categorization (69%), and the
likelihood of Black categorization was even stronger for a high-
prejudicial individual (88%). Thus, the network appeared to use
the emotion category to disambiguate a face’s race category, and
this was exacerbated with a high level of racial prejudice (thus
more readily activating the “Black is hostile” stereotype). How
was this stereotype-mediated race–emotion interaction accom-
plished?

For a high-prejudice individual, presentation of a racially am-
biguous angry face sets a process into motion where ambiguous
racial cues push the White and Black category nodes above their
resting levels, leading them to compete with one another. At the
same time, the highly activated Angry Cues node strongly excites
the Angry category node, but this is simultaneously inhibited by
the Race Task Demand node (because this is a race categorization
task). Activation of the Black category excites the Hostile Black
stereotype node, whereas the White category inhibits it. Similarly,
activation of the White category excites the Neutral White stereo-
type node, whereas the Black category inhibits it. Strong activation
of the Angry category node also excites the Hostile Black stereo-
type, leading the Hostile Black stereotype to become more active
than the Neutral White stereotype. Activation of the Hostile Black
stereotype, in turn, feeds back excitation to the Black category and
inhibition to the White category. Moreover, because of the
strongly activated Racial Prejudice higher-order node (because this
is a high-prejudice individual), which has excitatory connections
with the stereotype nodes, the stereotype nodes are already primed
to be quite active. Stronger activation of the Hostile Black stereo-
type then feeds back activation to the White and Black category
nodes, causing the Black category to become more active and the
White category to become suppressed. In such a way, stereotypes
exerted a top-down effect on race categorization through interac-
tions with the emotion category.

For a racially ambiguous happy face, however, the influence of
emotion category on race categorization was not obtained because
the happy category is not involved in stereotypic associations with
the race categories. As seen in Figure 6, for a happy face, the
proportion of Black categorizations appeared generally the same
for low- and high-prejudice individuals (at chance: 50%). Finally,
for low-prejudice individuals, the effect of the Angry category
node exciting the Hostile Black stereotype, which in turn caused
the race category nodes to diverge in activation (leading Black to
win), was not as strong as it was for high-prejudice individuals.
This is because the higher-order Racial Prejudice node primed
activation of the stereotype nodes in high-prejudice individuals.
Interestingly, Hugenberg and Bodenhausen (2003) also showed
that the converse interactive effect holds as well. In categorizing
facial emotion, racial prejudice exerts an analogous top-down
influence, causing race category to interact with emotion category.
High levels of racial prejudice lead White perceivers to activate the
angry category more strongly for emotionally ambiguous Black
faces than White faces, whereas this is not as readily seen in
perceivers with low levels of prejudice.

Phenomenon 3: Category Interactions Due to
Overlapping Stereotype Content

The interactive nature of category and stereotype activation
suggests that many categorizations may interact because of stereo-

Figure 6. The proportion of times that the network categorized a racially
ambiguous happy face and a racially ambiguous angry face as Black (i.e.,
when the Black category node won the competition), both for a high-
prejudice individual (darker gray bars) and a low-prejudice individual
(lighter gray bars).

261DYNAMIC INTERACTIVE THEORY OF PERSON CONSTRUAL



type contents that, by chance, happen to overlap. For instance,
particular social categories in one dimension (e.g., race) may
facilitate and inhibit the activation of categories in another dimen-
sion (e.g., sex) because of shared activations in the stereotype
level. Stereotypes associated with the sex category, male, include
aggressive, dominant, athletic, and competitive, and these are also
associated with the race category, Black. Similarly, stereotypes of
shy, family oriented, and soft-spoken apply not only to the sex
category, female, but also to the race category, Asian (Bem, 1974;
Devine & Elliot, 1995; Ho & Jackson, 2001). Thus, there is some
overlap in the stereotypes belonging to the Black and male cate-
gories and in the stereotypes belonging to the Asian and female
categories.

What would our model predict regarding this overlap? It would
predict that category activation along one dimension (e.g., sex)
would be constrained by feedback from stereotype activations
triggered by the other dimension (e.g., race). Sex categorization,
for example, could be potentially constrained by race-triggered
stereotype activations. Because the stereotypes of Black and male
categories happen to partially overlap, Black men would be cate-
gorized more efficiently relative to White and Asian men. This
overlap is represented in our previous instantiation of the model
(see Figure 2), as Aggressive happens to be positively linked and
Docile happens to be negatively linked with both Black and Male
categories. This overlap would lead the race-triggered excitation of
Aggressive and race-triggered inhibition of Docile to feed back
excitation to the Male category and inhibition to the Female
category. This would facilitate a male categorization or, in cases of
sex-ambiguous targets, bias categorizations toward male (rather
than female). A similar effect would occur with the Asian and
Female categories, where race-triggered excitation of Docile and
race-triggered inhibition of Aggressive would come to facilitate a
female categorization or bias categorizations toward female. Thus,
a dynamic interactive model predicts that incidental overlap in
stereotype contents could powerfully shape the perception of an-
other category dimension.

To demonstrate how the feedback from stereotype activation
could disambiguate categorization of an alternate dimension, we
ran a simulation of sex categorization using our earlier instantia-
tion of the model (see Figure 2). As done previously to simulate a
sex-categorization task context, we set higher level input at .9 for
the Sex Task Demand node and at .1 activation for the Race Task
Demand node. We ran three simulations, one for each race: a
sex-ambiguous Black face, a sex-ambiguous White face, and a
sex-ambiguous Asian face. For each, we set visual input at .5 for
both the Male Cues and Female Cues nodes (thus making sex-
specifying cues completely ambiguous). We set visual input at .95
for the cue node consistent with the face’s race, and we set visual
input at .025 for the cue nodes corresponding with the other two
races. Thus, for a sex-ambiguous Black face, we set visual input at
.95 for the Black Cues node, at .025 for the White Cues and Asian
cues nodes, and at .5 for the Male Cues and Female Cues nodes.
We ran each of the three simulations 100 times. After 150 itera-
tions, we selected the network’s sex-category response (male or
female) on the basis of whichever node had the highest activation.
Appendix C shows the proportion of female responses for each
race.

When a sex-ambiguous face was Black, the network was biased
toward male categorization, with a 26% likelihood to categorize it

as female. When White, random noise seemed to be driving the
sex-category competition one way or the other, with a 52% like-
lihood (random chance: 50%) of female categorization. When
Asian, however, the network was biased toward female categori-
zation, with a 75% likelihood of female categorization. Thus, a
dynamic interactive model predicts that perceivers would be bi-
ased to perceive sex-ambiguous Black faces as men and, con-
versely, to perceive sex-ambiguous Asian faces as women. This is
because the presumably task-irrelevant race category placed excit-
atory and inhibitory pressures on stereotype nodes that were inci-
dentally shared with sex categories. Thus, the activation of stereo-
types from presumably task-irrelevant categories (e.g., race) can
powerfully shape the activation of other social categories (e.g.,
sex). Initial evidence for these sex–race interactive effects, due to
incidental stereotype overlap, was recently reported (Goff,
Thomas, & Jackson, 2008; Johnson, 2009; Johnson, Freeman, &
Pauker, invited revision).

Bottom-Up Interactivity in Social Categorization

A dynamic interactive model of person construal permits not
just top-down interactions in social categorization but also
bottom-up ones as well. Above, we described how social catego-
ries may interact with one another through top-down processes.
However, such interactions may also be mediated at lower levels
in the system as well. For instance, different social categories may
interact because they are confounded directly in perceptual cues
themselves. Indeed, the face is an extremely complex stimulus that
affords many opportunities for bottom-up interactions. The mere
fact that so many social categories (e.g., sex, race, age, emotion)
are registered through the single percept of a face makes it highly
unlikely that each set of category-specifying features is indepen-
dent. Black individuals have considerably darker skin than White
individuals, but also men have darker skin than women. Thus, skin
tone, although strongly utilized for discriminating race, is also
utilized for discriminating sex (Hill, Bruce, & Akamatsu, 1995). In
all likelihood, multiple social categories share a great deal of the
face’s visual real estate. If correct, the variation in facial features
specifying one category (e.g., sex) will partially overlap with the
variation in features specifying another category (e.g., emotion).
Certain social categories may therefore be directly confounded
because of bottom-up featural overlap.

For instance, the facial features specifying anger appear to
overlap with the features specifying maturity, whereas the features
specifying fear appear to overlap with the features specifying
babyishness (Marsh, Adams, & Kleck, 2005). Becker et al. (2007)
made a compelling case for the confounded nature of sex and
emotion categories from shared bottom-up perceptual cues. In a
series of studies, they found that categorizations of sex and emo-
tion were facilitated for faces of happy women and angry men,
relative to happy men and angry women. Further, studies using
faces displaying neutral emotion provided evidence for direct
overlap in male-specifying cues and angry expressions, as well as
overlap in female-specifying cues and happy expressions (see also
Hess, Adams, Grammer, & Kleck, 2009; Oosterhof & Todorov,
2009). These studies suggest that a portion of the cues that make
a face more masculine are the same cues that make a face angrier.
Similarly, a portion of the cues that make a face more feminine are
the same cues that make a face happier.
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For instance, anger displays involve the center of the brow
drawn downward, a compression of the mouth, and flared nostrils.
These cues also distinguish sex categories. Men have larger brows
that may cause them to appear drawn downward. They also have
a more defined jaw and thinner lips, which may make the mouth
to appear more compressed, and they have larger noses, which
may lead to the appearance of flared nostrils. A similar overlap
exists for happy displays and the female face (Becker et al., 2007).
For instance, women have rounder faces than men, and the ap-
pearance of roundness increases when displaying happiness (i.e., a
smile draws out the width of the face). Previous studies suggest
that it is this direct, physical overlap in the cues signaling maleness
and anger and in the cues signaling femaleness and happiness that
leads to more efficient perceptions of angry men and happy
women (relative to happy men and angry women).

Phenomenon 4: Facial Emotion Shapes Sex
Categorization Through Shared Bottom-Up Cues

To account for these bottom-up interactive effects, we devel-
oped another instantiation (see Figure 7) of our general model (see
Figure 1). Connection weights are provided in Appendix D. Dif-
fering from previous instantiations, here nodes in the cue level
represent a single perceptual cue (e.g., defined jaw, smile). We did
not use the stereotype level for this instantiation.

The mechanism underlying the bottom-up sex–emotion interac-
tion is modeled in the cue level. Note that one cue node, Facial
Hair, has an excitatory connection with Male and inhibitory con-
nection with Female, whereas another cue node, Round Eyes, has
an excitatory connection with Female and inhibitory connection

with Male. Similarly, one cue node, Tensed Eyelids, has an excit-
atory connection with Angry and inhibitory connection with
Happy, and vice-versa for the cue node, Smile. These four cue
nodes represent the perceptual cues that independently relate to sex
categories and independently relate to emotion categories. How-
ever, also note that one cue, Furrowed Brow, has an excitatory
connection both with Angry and with Male (because a furrowed
brow conveys both categories, described earlier). Similarly, an-
other cue, Round Face, has an excitatory connection both with
Happy and with Female (because a rounder face conveys both
categories, described earlier). Thus, these two cue nodes represent
the bottom-up overlap in the perceptual cues conveying sex and
emotion. Note that the particular cues used in this instantiation
were chosen arbitrarily; they are merely intended to simulate the
set of nonoverlapping and overlapping perceptual cues that convey
sex and emotion categories.

To simulate a sex categorization task, we set higher level input
at .9 for the Sex Task Demand node and at .1 for the Emotion Task
Demand node. We ran four simulations: sex categorization of an
angry male, angry female, happy male, and happy female. For each
simulation, we set visual input at 1 for the cue nodes that would be
apparent on a given face stimulus. For instance, to simulate the
presentation of an angry male face, visual input was set at 1 for the
Facial Hair node (independently cueing Male category), Tensed
Eyelids node (independently cueing Angry category), and Fur-
rowed Brow node (cueing both Angry and Male categories). Or, to
simulate the presentation of an angry female face, visual input was
set at 1 for the Round Eyes node (independently cueing Female
category), Tensed Eyelids node (independently cueing Angry cat-
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egory), Furrowed Brow node (cueing Angry category but also
Male category), and Round Face node (cueing Female category but
also Happy category). Each simulation was run 100 times, each
time for 75 iterations, and an activation time course was averaged
for each of the four simulations. Reaction times were calculated as
the number of iterations it took for the sex-category node with
highest activation (the network’s response) to reach 90% of its
final activation state. This number was then multiplied by a con-
stant of 12 and added to a constant of 480 to approximate the
human reaction time data (in milliseconds) of Becker et al. (2007).

Appendix E shows the averaged activation time courses for the
four simulations. When a male face was angry, the Male catego-
ry’s activation grew more quickly and stabilized on a stronger
state, relative to when a male face was happy. Conversely, how-
ever, when a female face was angry, the Female category’s acti-
vation grew more slowly and stabilized on a weaker state, relative
to when a female face was happy. This sex–emotion interaction is
reflected in the reaction time data, shown in Appendix F. Catego-
rization of angry men and happy women was facilitated, relative to
categorization of angry women and happy men. This is the pattern
of results observed in human perceivers (Becker et al., 2007).
Thus, categorizing one dimension (e.g., sex) is shaped by direct
bottom-up overlap with the perceptual features supporting another
dimension (e.g., emotion). This highlights bottom-up interactivity
in social categorization and shows how it is naturally accounted by
a dynamic interactive model of person construal.

Contextual and Cross-Modal Interactivity in Social
Categorization

One of the most remarkable features of perceiving other people,
compared with everyday objects, is that perceptions of people are
frequently grounded in multiple sensory modalities and embedded
in a rich set of contexts. The human voice, for example, always
contextualizes the human face, continuously over time. The body’s
motion, for instance, contextualizes the perception of its shape. A
growing number of studies have shown that these prevalent con-
textual and cross-modal cues powerfully constrain the perception
of the social percepts under the focus of perceivers’ attention.

Hair, for instance, is a cue that may appear stereotypically Black
or Hispanic. In a series of studies, racially ambiguous faces were
readily disambiguated by their hair, with Black-like hair biasing
categorizations toward Black and Hispanic-like hair biasing cate-
gorizations toward Hispanic (MacLin & Malpass, 2001). Thus, an
identical face was perceived as Black or Hispanic depending on
the hair cue that contextualized it. Other cues that contextualize the
face, such as cues of the body, also constrain the face’s perception.
For instance, perceivers’ categorization of a face’s emotion slows
down when the face is coupled with incongruent emotional body
cues (Meeren, van Heijnsbergen, & de Gelder, 2005). Aviezer et
al. (2008) presented participants with identical faces that were
embedded in different body contexts that suggested particular
emotions. Perceptions of identical facial expressions were strik-
ingly influenced by contextualizing body cues. Thus, visual con-
texts surrounding a face, such as emotional body cues, powerfully
bias perceptions of facial emotion.

Emotional body cues—whether the body is moving angrily or
sadly—heavily bias the perception of the body’s sex. Point-light
displays depicting angry body motions are more likely to be

judged as men and those depicting sad body motions more likely
to be judged as women (Johnson et al., 2010). One likely reason
for this is that emotion expression is sex-stereotyped, such that
men are stereotyped as angry, and women are stereotyped as sad.

The power of a social percept’s context is not limited to visual
cues. Cues from other sensory modalities that contextualize the
face can also alter its perception. For instance, incongruence
between facial and vocal cues (e.g., a slightly feminine male voice
with a male face; a happy voice with a sad face) alters perceptions
of the face and induces longer face-categorization latencies (Cam-
panella & Belin, 2007; Freeman & Ambady, 2011). Cross-modal
cues originating even in the olfactory system appear to interact
with the processing of visual social percepts. The smelling of
sex-specific hormones, for instance, biases the perception of a
face’s sex category. Perceivers exposed to an androgen (a male-
specifying hormone) required less masculine features to perceive a
face as male, whereas perceivers exposed to estrogen (a female-
specifying hormone) required more masculine features (Kovács et
al., 2004). Below, we focus on the interactivity between the face
and voice in person construal.

Phenomenon 5: Continuous Face–Voice Interactivity
in Social Categorization

Visual processing of the face and auditory processing of the
voice robustly interact to perceive others, specifically in perceiving
identity and emotion. For instance, when a face appears sad but is
accompanied by a voice that sounds happy, perceivers consistently
report seeing the face as more happy than it really is. This remains
true even when participants are instructed to disregard the voice
(de Gelder & Vroomen, 2000). Furthermore, congruency between
vocal and facial features tends to make perceptions of another’s
emotions more accurate and efficient (for review, see Campanella
& Belin, 2007). Recently, face–voice interactions have also been
explored in the context of sex categorization (Masuda, Tsujii, &
Watanabe, 2005; E. L. Smith, Grabowecky, & Suzuki, 2007).

We investigated the temporal dynamics through which voice
processing interacts with face processing in sex categorization
(Freeman & Ambady, 2011). Participants categorized slightly am-
biguous male and female faces by sex while simultaneously pre-
sented with a sex-typical voice (e.g., masculinized male voice for
a male face) or a sex-atypical voice (e.g., feminized male voice for
a male face). We tracked their computer mouse trajectories en
route to indicating a “male” or “female” response on the screen.
When categorizing a face’s sex, the simultaneous processing of a
sex-atypical voice led the hand to travel closer to the opposite sex
category continuously across construal (see Figure 8). Thus, even
when perceivers correctly categorized the face’s sex, auditory
processing of sex-specifying vocal cues exerted a temporally dy-
namic influence on the face-based categorization. Specifically,
face and voice processing simultaneously weighed in on partially
active representations of sex categories (male and female), which
had to compete over time to settle into ultimate categorizations. By
continuously feeding into the sex-categorization process in paral-
lel, face and voice processing were thrown into interaction with
one another over time.

To account for this temporally dynamic face–voice interactivity
in sex categorization, we developed another instantiation (see
Figure 9) of our general model (see Figure 1). Connection weights

264 FREEMAN AND AMBADY



are provided in Appendix G. In this instantiation, the cue level
receives input from both visual processing and auditory process-
ing, with nodes for Male Facial Cues, Female Facial Cues, as well
as Male Vocal Cues and Female Vocal Cues.

To simulate the presentation of a slightly ambiguous male face,
we set visual input at .55 for Male Facial Cues and at .45 for
Female Facial Cues. To simulate the simultaneous presentation of
a sex-typical voice, we set auditory input at .95 for Male Vocal
Cues and at .05 for Female Vocal Cues. We also set higher level
input at .9 for the Sex Task Demand node to simulate a strong
attentional state on targets’ sex required by the task. We ran this
simulation 100 times, each time over 75 iterations, and plotted the
averaged level of activation of the category nodes over time
(Figure 10). The slightly ambiguous activation of facial cues nodes
fed forward activation onto the Male and Female category nodes.
Simultaneously, the activation of the vocal cues nodes also fed
forward activation onto the category nodes. In doing so, the
simultaneous processing of vocal cues placed an immediate con-
straint on the face-triggered activation of sex categories. This
permitted ongoing updates from voice processing to immediately
interact with ongoing updates from face processing, continuously

over time. The strong activation of Male Vocal Cues was therefore
immediately brought to bear on resolving the category competition
induced by ambiguous facial input. Strong excitation of the Male
category and inhibition of the Female category, due primarily to
the unambiguous vocal cues nodes, led the system to rapidly
converge on a stable state involving strong activation of Male
category, with Female category pushed below resting level.

When the voice is more atypical, however, the face-triggered
category competition does not resolve so quickly. To simulate the
presentation of a slightly ambiguous male face coupled with a
sex-atypical voice, we kept the input activation the same except,
this time, we set input into the Male Vocal Cues node at .6 and
input into the Female Vocal Cues at .4. We ran the simulation 100
times, each time over 75 iterations, and plotted the averaged level
of activation of the category nodes over time (Figure 10). The
slightly ambiguous activation of facial cues nodes and slightly
ambiguous activation of vocal cues nodes simultaneously fed
forward activation onto the Male and Female category nodes. This
induced a strong competition between the category nodes. Al-
though the system eventually resolved the competition by arriving
at a stable state involving strong activation of Male and weak

Figure 8. In a series of studies, Freeman and Ambady (2011) found that when categorizing a face’s sex, the
simultaneous processing of a sex-atypical voice led participants’ computer mouse trajectories to be continuously
attracted to the opposite sex-category response before settling into the response consistent with the face’s correct
sex. Mean mouse trajectories from this study are depicted (aggregated across male and female targets). In this
figure, trajectories for all targets were remapped rightward, with the opposite sex-category on the left and the
sex-category consistent with the face’s sex on the right. A sample male face stimulus is displayed (all male and
female face stimuli were somewhat sex-ambiguous). A voice stimulus typical for the face’s sex (masculine) is
shown on the right (audio waveform depicted in blue), next to the mean trajectory for sex-typical trials. Its
atypical (feminine) counterpart is shown on the left, next to the mean trajectory for sex-atypical trials (audio
waveform depicted in purple). During an actual trial, a single face was centered at the bottom of the screen while
the voice stimulus played. The bar graph shows trajectories’ maximum deviation toward the opposite sex-
category from a direct line between trajectories’ start and end points, separately for sex-typical and sex-atypical
trials (error bars denote standard error of the mean). From “When Two Become One: Temporally Dynamic
Integration of the Face and Voice,” by J. B. Freeman and N. Ambady, 2011, Journal of Experimental Social
Psychology, Vol. 47, p. 261. Copyright 2011 by Elsevier. Adapted with permission.
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activation of Female (i.e., a male categorization), the Female
category was partially active in parallel strongly throughout the
process. This partial activation of the Female category was con-
siderably stronger when the voice was sex-atypical rather than
sex-typical (see Figure 10).

This pattern is precisely what is observed in the laboratory
(Freeman & Ambady, 2011). The stronger partial activation of
the Female category, which continuously competes with the
Male category, is clearly seen in the human mouse-tracking data
of Figure 8. When sex-categorizing a male face, the simultane-
ous processing of a sex-atypical voice led participants’ hands to
be continuously attracted toward the “Female” response before
ultimately arriving at the “Male” response. This reflects a
stronger partially active representation of the Female category
(induced by voice processing) that simultaneously competed
over time with the Male category during face-based categori-
zation. Thus, in sex categorization, the model predicts (as
experimental data show) that voice processing interacts with
face processing by simultaneously weighing in on the dynamic
competition inherent to the categorization process. As such, the
simultaneous processing of facial and vocal cues places parallel
constraints on sex categorization (which are dynamically satis-
fied over time), permitting the ongoing processing of vocal cues
to continuously interact with the ongoing processing of facial

cues. In short, our model naturally accounts for continuous
cross-modal interactivity in person construal.

Summary

We propose a dynamic interactive theory of person construal. It
argues that the perception of other people is accomplished by a
dynamical system in which lower level sensory perception and
higher-order social cognition continuously coordinate across mul-
tiple interactive levels of processing to give rise to stable person
construals. We described a recurrent connectionist model of this
system that accounted for a wide range of phenomena, including
partial parallel activation and dynamic competition in categoriza-
tion and stereotyping (Phenomenon 1), top-down influences of
high-level cognitive states and stereotype activations on categori-
zation (Phenomena 2 and 3), bottom-up category interactions due
to shared perceptual features (Phenomenon 4), and continuous
cross-modal interaction in categorization (Phenomenon 5).

In a dynamic interactive model, perceptions of other people
gradually emerge through ongoing cycles of interaction between
social categories, stereotypes, high-level cognitive states, and the
low-level processing of facial, vocal, and bodily cues. Internal
representations of categories and stereotypes are dynamically and
probabilistically reconstructed, rather than behaving like static,
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Figure 9. An instantiation of the model, used for simulations to account for Phenomenon 5 (connection weights
in Appendix G).
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symbol-like structures that wait around inertly until discretely
accessed. The real-time evolution of these probabilistic represen-
tations is in continuous interaction with other activations across the
system, both dynamically influenced by these other activations and
a source of influence over them. The entire system’s prior history,
its visual inputs (e.g., facial cues), auditory inputs (e.g., vocal
cues), and higher level inputs (e.g., attention, prejudice, motiva-
tion), its internal constraints, and some random noise jointly de-
termine the construal of other people.

Comparison With Extant Models

Extant social psychological models have described how perceiv-
ers form high-level impressions of other people, whether they
utilize category-based or individual-based information, and how
knowledge about individuals and groups is learned, stored, and
accessed (Bodenhausen & Macrae, 1998; Brewer, 1988; Chaiken
& Trope, 1999; Fiske et al., 2002; Fiske & Neuberg, 1990; Hig-
gins, 1996; Kunda & Thagard, 1996; Read & Miller, 1998b; E. R.
Smith & DeCoster, 1998; Srull & Wyer, 1989; Van Overwalle &
Labiouse, 2004). Models in the cognitive face-processing litera-
ture, on the other hand, have described the visual and perceptual
mechanisms that permit face recognition (Bruce & Young, 1986;
Burton et al., 1990; Valentin, Abdi, O’Toole, & Cottrell, 1994).
Our dynamic interactive model helps unify these two literatures by
describing how the lower-level perceptual processing modeled in
the cognitive literature works together with the higher-order social
cognitive processes modeled in the social literature to give rise to
person construal.

Social psychological models have tended to use categorization
as a starting point, with relatively little focus on the perceptual
processing that gives rise to it. Thus, in Fiske and Neuberg’s
(1990) influential model of impression formation, it is argued that
the utilization of stereotypes, which is derived from a dominant
categorization, is prioritized over more individual-based informa-
tion in forming impressions, unless the perceiver is motivated to
move further and individuate the target. This model, like Brewer’s
(1988) and Kunda and Thagard’s (1996) models of impression
formation, provides comprehensive accounts of how top-down
processes—such as stereotypic expectations, motivation, and at-

tention—interact with the bottom-up process of learning explicit
individuated characteristics about a target. In these models, there-
fore, a target’s category memberships are given, and their influ-
ences on subsequent interpersonal phenomena are richly described
(e.g., impressions, behavior). This is also the case for other models
of person perception, such as Bodenhausen and Macrae’s (1998)
stereotype activation and inhibition model. As such, categorization
(and corresponding stereotype activation) is the initial input into
these models. The focus of these models is not to explain the
categorization process itself—it is to explain the higher-order
social cognitive processing that comes after.

Our framework builds on these important models by fleshing
out the initial category and stereotype activation process and
explaining how this process is dynamically driven by both
bottom-up sensory information as well as high-level top-down
factors. Notably, this expands on extant models by explaining how
initial category and stereotype activation may be influenced, some-
times considerably, by top-down factors. Although models of
person perception have always emphasized the role of top-down
factors (e.g., expectations, motivation, and attention), these factors
have not been readily acknowledged to seep down into lower-
levels of processing, into the initial category and stereotype acti-
vation process itself. For example, in our model such top-down
factors had an important role in Phenomenon 2, where racial
stereotypes, more or less activated by prejudice, caused a face’s
emotional expression to alter the perception of race. Our modeling
of the reach of top-down influences into even lower-levels of
person perception, such as basic category activation, thus builds on
extant models that have generally described only the reach of
top-down influences into higher levels of processing.

Beyond the importance of accounting for how perceptual pro-
cessing brings about social cognitive phenomena in general, our
modeling of perceptual processing is also important because it can
bear a variety of downstream effects. For example, within-
category facial or vocal variation affects the dynamic competition
inherent to categorization (e.g., Freeman & Ambady, 2011; Free-
man et al., 2008), in turn affecting the eventual stable category
representations that perceivers settle into (Locke et al., 2005).
Thus, more prototypically masculine facial or vocal features (rel-
ative to less), for instance, affect the competition between male
and female categories, which results in a stronger stable represen-
tation of the male category and weaker stable representation of the
female category (see Figure 4A). This can bear a variety of
downstream effects, shaping trait attributions (Blair et al., 2005;
Blair, Judd, & Fallman, 2004; Blair et al., 2002; Ko, Judd, & Blair,
2006; Maddox & Gray, 2002) as well as behavior (Blair, Judd, &
Chapleau, 2004; Eberhardt et al., 2006). Moreover, as shown in
Phenomenon 4, categorization of a focal category membership
may be shaped by other memberships because the perceptual cues
supporting those memberships are directly confounded (e.g., angry
men and happy women; Becker et al., 2007). Thus, our framework
builds on extant models by shedding new insights into the rela-
tionship between the higher-order processes that extant models
have described and the lower-level perceptual processing that has
received less attention.

Kunda and Thagard’s (1996) model of impression formation
and Read and Miller’s (1998b) Social Dynamics model provide
important precedents to the present work. These connectionist
models proposed that parallel-constraint-satisfaction principles

Figure 10. The activation level of the Male and Female category nodes
as a function of time (iterations) following the presentation of a sex-typical
male face (solid lines) and a sex-atypical male face (dashed lines).
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guide impression formation and social reasoning, and here we
proposed that such principles guide person construal. Thus, in
Kunda and Thagard’s model, categories (e.g., Black) and stereo-
types (e.g., aggressive) have an equal priority with individuating
information (e.g., pushed someone) in driving high-level impres-
sions, and this information is simultaneously integrated into a
coherent impression through a process of constraint satisfaction.
Read and Miller’s model additionally included detectors for per-
ceptual features and considered these detectors’ influence on how
a target is identified, with a target’s identification thereafter influ-
encing high-level social reasoning (understanding social scenarios
and attributing traits). For example, Read and Miller considered
how detection of a target’s gray hair would lead to the identifica-
tion that the target is old, which then guides how perceivers reason
about a relevant social scenario (e.g., why someone would help
carry groceries for the target). At the heart of their model is a
constraint-satisfaction process that gives rise to high-level social
reasoning, similar to the constraint-satisfaction process underlying
Kunda and Thagard’s model. Our model shares a kinship with
these models and suggests that constraint-satisfaction processes
may give rise to a variety of different person-perceptual phenom-
ena, including person construal in our case, as well as impression
formation (Kunda & Thagard, 1996) and social reasoning (Read &
Miller, 1998b).

These models, however, like other connectionist models in
person perception research (Read & Miller, 1993; Read et al.,
1997; E. R. Smith & DeCoster, 1998; Van Overwalle & Labiouse,
2004), did not aim to extensively deal with the perceptual process-
ing that drives the category and stereotype activation process or to
examine how specific perceptual interpretations emerge. However,
they did make important points about the role of perceptual pro-
cessing in instigating the higher-order phenomena they were in-
terested in and about the ability for perceptual processing to be
potentially influenced by these phenomena (e.g., Read & Miller,
1998b). Our model builds on these prior models by examining how
perceptual interpretations emerge and by comprehensively model-
ing the role of perceptual processing and its dynamic influence by
higher-order processes. Our model also extends these models by
directly examining the temporal dynamics of construing others.
For instance, although extant connectionist models, like our model,
assume that processing is continuous and that internal representa-
tions are dynamic, temporal dynamics and the time-course of
person perception were not of primary interest. Instead, these
models generally focused on the outcomes of person perception.
Therefore, a network’s ultimate stable states were used to explain
person perception outcomes, with little modeling and simulation of
the extended dynamic processing that culminates in those out-
comes. Our model builds on these models by explicitly describing
the temporal dynamics of person construal and by accounting for
these dynamics in several simulations. This is important because a
central claim of our theory is that perceptions of other people are
the end-result of a time-dependent process of simultaneously and
partially active representations continuously interacting over time.
Thus, it is important that our model explicitly describe these
dynamics and fit them to human data. The fleshing out of temporal
dynamics is a novel aspect of our theory and model, and these add
to extant accounts of person perception.

Implications

Our theory and model have several implications for present
understandings of person construal, which we discuss here.

Re-Thinking the “Multiple Category Problem”

Individuals naturally vary along any number of category dimen-
sions (e.g., sex, race, age). Extant models have often emphasized
that one category and the stereotypes tied to that category come to
dominate the processing landscape, whereas others are actively
suppressed, making the perceiver’s job easier and thereby solving
the “multiple category problem” (e.g., Bodenhausen & Macrae,
1998; Macrae, Bodenhausen, & Milne, 1995; Sinclair & Kunda,
1999).

In a dynamic interactive model, the selection of one category
and winnowing of other categories is accomplished by top-down
pressure from higher-order nodes. For instance, the task demands
of sex categorization, expressed by higher-order nodes, exert ex-
citatory pressure on to-be-attended categories (male, female) and
inhibitory pressure on task-irrelevant categories (e.g., Black,
White, Asian). However, our model introduces several nuances to
an understanding of how the person construal system comes to
arrive at focal categorizations of others.

Our model assumes that these top-down task-demand pressures
exert their differential influence on categories dynamically over
time. Thus, although for the purposes of sex categorization an
applicable sex category rises in activation (thus becoming focally
attended), whereas an applicable race category falls (thus becom-
ing ignored), this pattern of excitation and inhibition is not instan-
taneous. Rather, higher-order task-demand nodes gradually exert
excitatory pressure on certain categories while exerting inhibitory
pressure on others. Thus, while these pressures are still at work our
model predicts that multiple applicable category memberships
(e.g., sex, race) are actually flexibly active in parallel. This places
our model in line with neural dynamic models of visual attention
(Desimone & Duncan, 1995), which assume a similar parallel
activation of multiple representations.

Because multiple applicable category memberships (e.g., Black,
angry) may be active in parallel while the system works toward
stabilizing on a focal category (e.g., Black), nonfocal categories
also have an influence over perception. This is because their partial
parallel activation can powerfully affect the system’s trajectory
and the stable states it achieves. A clear demonstration of this, for
example, is found in our modeling of the stereotype-mediated
race–emotion interactive effects (Phenomenon 2). Because of the
context of a race categorization task, higher-order nodes exerted
excitatory pressure on race-category nodes and inhibitory pressure
on emotion-category nodes. While these top-down task-demand
pressures were at work, for a great deal of processing time emotion
categories were still partially active in parallel. This emotion-
category activation had a powerful effect on the trajectory of the
system and on race categorization in particular. The competition
between race categories, which was initiated by a race-ambiguous
face (and thus initially equibiased with respect to bottom-up visual
input), was powerfully swayed one way (White) or the other
(Black) on the basis of the partial parallel activation of presumably
task-irrelevant emotion categories. Specifically, when a race-
ambiguous target was angry, the partial activation of the Angry
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category biased the race-category competition toward a Black
categorization, and this was especially the case for high-prejudice
individuals. Thus, nonfocal, presumably task-irrelevant categories
(e.g., emotion in a race categorization task) can bear powerful
influences on focal person construals.

Our model also implies that, in the absence of strong top-down
factors that require all but one category to be inhibited (e.g., task
demands, goals), the person construal system could settle into
stable states that are quite flexible. For instance, without higher-
order nodes exerting inhibitory pressures on particular category
nodes, the attractor states that the person construal system settles
into could easily involve multiple categories (e.g., White, male)
that are flexibly active in parallel. Indeed, the quality of having
multiple person characteristics (e.g., lazy, friend, lives nearby)
partially active in parallel is a central feature of the content-
addressable memory modeled in connectionist networks of person
memory (E. R. Smith, 1996, 2000; E. R. Smith & DeCoster, 1998).
Just as multiple categories have often been shown to simultane-
ously constrain high-level impressions and social reasoning
(Kunda & Thagard, 1996; Read & Miller, 1998b), a dynamic
interactive theory proposes that they also simultaneously constrain
lower-level person construals. Thus, the “multiple category prob-
lem” might best be characterized not so much as a “problem” that
must be eliminated to keep cognitive efficiency (Allport, 1954) but
rather as a reflection of the flexibility of interactive, parallel
category representations.

The Dynamic Coextension of Category and
Stereotype Activation

Recent research has found that variation in facial features may
bear effects on stereotype activation that are independent of a
target’s category membership. For instance, the presence of Black-
specifying cues on a person who is not Black (e.g., a White face)
increases Black-related stereotypic attributions (Blair et al., 2005,
2002). These effects may thereafter influence behavior as well. For
example, in court trials, targets with more Black-specifying fea-
tures are punished more severely and more likely to be sentenced
to death (Blair, Judd, & Chapleau, 2004; Eberhardt et al., 2006).
On the basis of such findings, some accounts have argued that
these independent feature-based effects on stereotype activation
are accomplished by a special feature-based processing route,
where features become associated with stereotypes unmediated by
any category representation at all (Blair et al., 2002; Livingston &
Brewer, 2002). This direct features 3 stereotypes route is theo-
rized to be separate from a more typical categories3 stereotypes
route.6

Our model agrees with these previous accounts that facial fea-
tures can influence stereotype activation without a discrete cate-
gorization. However, because our model permits categorizations to
be partially active in parallel, independent feature-based effects on
stereotype activation could be mediated by the tentative, partially
active categorization of an alternate category. Specifically, our
model suggests that independent feature-based effects on stereo-
typing are a product of the dynamic processing cascade inherent to
the system. Cues of an alternate category (e.g., Black-specifying
cues on a White target) trigger partially active, competing category
representations (e.g., “he’s [tentatively] White” vs. “he’s [tenta-
tively] Black”). Both category representations (e.g., White, Black)

then immediately pass activation onward to their respective ste-
reotypes before the competition in the category level has resolved
and settled into just one alternative. This is reflected in Figure 4B,
where feminine cues on a man’s face triggered the partial and
parallel activation of the Female category, which continuously
cascaded into the partial and parallel activation of the female-
related stereotype, Docile, as was shown with human perceivers
(Freeman & Ambady, 2009). Thus, the dynamic coextension of
category and stereotype activation permits independent feature-
based effects on stereotype activation. As such, our model parsi-
moniously accounts for independent feature-based effects on ste-
reotyping by one single route involving a dynamic processing
cascade.7

A Rapidly Adaptive, Ecologically Valid Person
Construal System

Like the present model, the ecological approach to social per-
ception (McArthur & Baron, 1983) emphasized the need to study
directly the stimulus information that avails perceivers with func-
tionally significant characteristics about other people. It also em-
phasized the inherently dynamic and multimodal nature of social
stimuli. Our dynamic interactive framework is in the best spirit of
this approach and builds on it in several ways.

Our framework brings new and helpful ways of thinking about
ecologically valid person construal. Specifically, it assumes that

6 It should be noted that this also applies to face overgeneralization
effects. Face overgeneralization occurs when adults whose facial charac-
teristics resemble babies, the unfit, a particular emotion, or a familiar
person are perceived as possessing the internal characteristics suggested by
those cues (e.g., being babyish, being unfit, feeling a particular emotion, or
being similar to another familiar person, respectively; Zebrowitz & Mon-
tepare, 2008). Conceptually, overgeneralization effects are akin to inde-
pendent feature-based effects on stereotype activation. For instance, baby-
specifying cues on an adult’s face appear to partially trigger baby
stereotypes independent of the fact that the target is not actually a baby.
This is akin to Black-specifying cues on a White target triggering Black-
related stereotypes independent of the fact that the target is White (e.g.,
Blair et al., 2002) or analogous effects with sex categories (Freeman &
Ambady, 2009). Thus, face overgeneralization effects are similarly ac-
counted in our model by the dynamically cascading activation inherent to
the person construal system. Specifically, activation of baby-specifying
cues on an adult’s face, for example, would continuously cascade activa-
tion into the category level, triggering partially active representations of
both adult category and baby category. These, in turn, would continuously
cascade activation into the stereotype level, triggering the partial parallel
activation of baby stereotypes. This would thereafter bias high-level judg-
ments and evaluations, driving the perceiver to infer the adult target is
somewhat babyish (e.g., innocent, inexperienced). Thus, a dynamic inter-
active model can account for face overgeneralization effects, complement-
ing connectionist networks that model them explicitly (Zebrowitz et al.,
2003; Zebrowitz, Kikuchi, & Fellous, 2010).

7 Although our model can account for independent feature-based effects
on stereotyping with a single route involving dynamically cascading acti-
vation, future work could attempt to empirically disentangle a one-route
account (cues 3 categories 3 stereotypes) versus a two-route account
(categories 3 stereotypes and cues 3 stereotypes) using new instantia-
tions of the model. By implementing direct connections between the cue
nodes and stereotype nodes, researchers could determine whether experi-
mental data better fit a one-route or two-route account in the future.
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the person construal system’s processing is fully continuous and
highly interactive, and that its representations are probabilistic,
active in parallel, and changing over time. This is exactly the sort
of system required for the ecologically valid person perceiver—the
kind of perceiver that must make sense of others in real-time,
on-the-fly, and in a rapidly changing social environment. In real-
world social encounters, the sensory stimulation of another person
is almost always in continuous flux (Gibson, 1979). The most
obvious example might be the perception of a face’s emotion,
which continuously fluctuates over time. Rarely do perceivers
encounter a static emotional expression. Rather, for just a few
fleeting moments, another’s face displays slight anger, which then
rapidly transitions into some other expression. By the time per-
ceivers are finished processing that subtle anger, however, there
are already hundreds of milliseconds of new visual information
that needs to be accrued and dealt with. In real-world person
construal, therefore, another’s face tends not to fit squarely into
any one expression (e.g., angry) but is usually in some in-between
state amidst one interpretable expression and the next and is rarely
standing still.

For simplicity, in our instantiations of the model, we supplied
external input to the network discretely (at iteration 1). However,
the model is flexible to support the more ecologically valid situ-
ation in which external stimulation to the network dynamically
changes across time on the basis of changing cues in the social
environment. As a face’s emotion, a body’s subtle nonverbal
behavior, or the ongoing stream of vocal cues fluctuate over time,
the visual and auditory inputs into cue nodes would continually
change across iterations accordingly. This would thereby contin-
ually change, iteration to iteration, the amount of excitatory and
inhibitory pressures on category and stereotype nodes. As such, at
any given moment while the system is trying to settle into one
stable attractor state, new sensory information bombarding the
system would already start changing the various attractor states to
which the system will start gravitating (Spivey, 2007). This leaves
little time for the system to actually rest in any given stable state,
since by the time it starts to stabilize it is already being pushed out
of its stability by new constraints (e.g., changes of a face’s emo-
tion, of the body’s behavior, of the voice stream). Thus, the
network we have outlined is a rapidly adaptive and dynamic
person construal system. Its continually evolving states are able to
be tightly yoked to the ongoing sensory stimulation of the social
environment.

This adaptive, dynamic person construal system is potentially
stimulated by continuous top-down input as well. For instance,
ecologically valid, moment-to-moment changes in one’s goals or
attentional states, among other top-down factors, would continu-
ally stimulate higher-order nodes, which thereafter continually
change the amount of excitatory and inhibitory pressures on cat-
egory and stereotype nodes. Thus, although for the sake of sim-
plicity we modeled external inputs into the network as discrete
occurrences, the system is inherently capable of supporting stim-
ulation by a dynamically changing social environment as well as
dynamically changing internal cognitive states.

An ecologically valid person construal system also needs to
permit ongoing perceptions of other people to guide action con-
tinuously over time. In social interaction, something apparent on
Individual A’s face and gesturing elicits a reaction on Individual
B’s face and gesturing, which then elicits a reaction on Individual

A’s face and gesturing, and so on and so forth. Thus, there is no
staccato series of static images and sounds that elicit particular
reactions. Instead, ecologically valid person construal would likely
need to involve continuous millisecond-by-millisecond updates of
facial, vocal, and bodily information, and these updates need to
make their way onto the motor system immediately, not once the
system has 100% finalized the processing of each transient image
or sound in a social interaction. Indeed, recent neurophysiological
evidence suggests that this dynamic person processing is a likely
possibility. In a series of event-related potential studies, we dem-
onstrated that the process of social categorization immediately
shares its ongoing results with the motor cortex to guide action
continuously over time (Freeman et al., in press). This is consistent
with multi-cell recordings in nonhuman primates (Cisek &
Kalaska, 2005, 2010). Thus, person construal is characterized by
continuous perceptual–cognitive–motor dynamics, such that per-
ceptual, cognitive, and motor processing are coextensive. Cogni-
tive representations of a face’s category memberships develop
over hundreds of milliseconds while perceptual processing is on-
going, and these representations evolve alongside accruing percep-
tual evidence for category alternatives. Further, ongoing results of
this social category processing are immediately cascaded into the
motor cortex to guide relevant actions continuously over time.
Thus, person construal is continuously coextensive with action.
This is exactly the kind of processing required by the ecologically
valid person perceiver.

In short, we have described here a person construal system that
is rapidly adaptive and dynamic. It is able to perceive others in an
ecologically valid, real-time social environment while also able to
coordinate with the motor system to act on ongoing perceptions.

New Predictions and Future Directions

Beyond our model’s ability to explain a wide range of phenom-
ena, it also gives rise to a number of new and distinctive predic-
tions, which future work could directly examine. Below are a few
examples of important predictions derived from the model that
could serve as testable hypotheses in the future.

Category Interactions Due to Incidental Stereotypic
and Phenotypic Overlap

Our model makes the novel prediction that any incidental over-
lap in the stereotype or phenotype content of two category mem-
berships would lead the system to throw those categories into
interaction. As shown in Phenomenon 3, overlapping stereotype
content between the male and Black categories (e.g., aggressive)
and between the female and Asian categories (e.g., docile) created
top-down pressure that gave rise to sex–race interactions. Or, as
shown in Phenomenon 4, overlapping phenotype content between
male and angry faces (e.g., furrowed brow) and between female
and happy faces (e.g., roundness) created bottom-up pressure that
gave rise to sex–emotion interactions.

However, any number of category interactions are possible and,
in fact, quite likely. Many stereotypes are likely to be incidentally
shared by multiple categories. In fact, the very existence of some
categories may be predicated on the stereotypes of other catego-
ries, such as sexual orientation categories and sex-category stereo-
types (Kite & Deaux, 1987), and this is evident in perceptual
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construals (Freeman, Johnson, Ambady, & Rule, 2010; Johnson,
Gill, Reichman, & Tassinary, 2007). Future work could empiri-
cally estimate the degree of stereotype overlap between categories
using explicit or implicit measures, and implement the estimated
overlap into the stereotype and category levels. A variety of
category interactions could arise in network simulations, and these
could then be experimentally tested in the laboratory.

Similarly, the perceptual cues contained in the face, voice, and
body are likely to, by chance, partly covary between categories.
Future work could empirically estimate the degree of phenotype
overlap between categories and then implement this estimated
overlap into the cue and category levels. For example, face-
modeling techniques can derive precise estimates of hundreds of
facial cues from a facial photograph (e.g., Blanz & Vetter, 1999).
Thus, researchers could derive estimates of cue overlap using
representative samples of faces for specific category memberships
and then implement these estimates into instantiations of the
model. If category interactions arose in network simulations, these
could then be experimentally investigated in the laboratory.

Category interactions could also potentially be driven by both
top-down and bottom-up overlap at the same time. For example,
not only do male and angry cues and female and happy cues
overlap (Becker et al., 2007) but also men are stereotyped as angry,
and women are stereotyped as happy (Fabes & Martin, 1991).
Simulations with our model are uniquely poised to assess the
relative contribution of potentially coexistent top-down and
bottom-up forces in driving category interactions. Such simula-
tions could also be used to tease apart the time-courses of these
two forces’ influence on perceptions.

Temporally Dynamic Influence of Top-Down Factors

As shown with Phenomena 2 and 3, high-level cognitive states
and stereotype activations may readily exert top-down pressure on
categorization. Although in the case of substantially ambiguous
targets our model predicts that such pressure will lead categoriza-
tions to be pushed entirely one way (e.g., White) or another (e.g.,
Black), an ultimate categorization outcome is unlikely to be altered
in the case of less ambiguous targets. Nonetheless, even though in
many instances such outcomes may not be altered wholesale, our
model predicts that top-down factors will still impose a variety of
dynamic biases across the categorization process. Further, these
will often result in the triggering of alternate category member-
ships (e.g., male category for a female target) that are partially
active in parallel. Consider the following example.

An individual on a job interview is told she will meet with a
high-profile business executive. Her expectations of the executive
trigger a host of stereotypes (e.g., business-oriented, dominant,
high-status), which are mostly associated with the Male category.
As she enters the office and takes her initial glance at the execu-
tive, who is a woman, visual processing of female-specifying cues
will activate cue nodes, which thereafter place excitatory pressure
on the Female category. Simultaneously, the activated stereotypes
will exert excitatory pressure on the Male category. Eventually,
competition between the two categories will lead the system to
converge on an attractor state involving strong activation of Fe-
male and weak activation of Male, thereby achieving a female
construal. Nonetheless, the Male category would be partially ac-
tive in parallel for hundreds of milliseconds while top-down pres-

sure from stereotype activation (biasing the competition toward a
male construal) continuously interacts with the target’s bottom-up
perceptual accrual (biasing the competition toward a female con-
strual). Thus, even though perceivers’ ultimate construal outcomes
might not be affected by top-down factors, our model predicts that
the construal process will be considerably influenced by such
factors.

Such temporally dynamic influences of top-down factors on the
construal process have yet to be tested in the laboratory. Prior work
investigating top-down influences has focused on ultimate con-
strual outcomes rather than the temporal dynamics culminating in
those outcomes. The studies that have examined temporal dynam-
ics (e.g., via mouse-tracking), however, have investigated only
bottom-up effects (e.g., manipulations of cues) to shed light on the
nature of person construal processing, with little mention of top-
down effects. Our model makes the novel prediction that even for
person construals that are ultimately “veridical,” top-down factors
will still exert any number of subtle, temporally dynamic biases
across the course of construal. Future work could investigate this,
including measuring the time-course of these top-down biases and
confirming its correspondence with network simulations.

Downstream Consequences of “Hidden” Parallel
Activations

Anderson (2002) argued for the importance of bridging psycho-
logical phenomena across multiple orders of temporal magnitude.
Here we provided a model of person construal that fleshes out the
process by which an ultimate perception crystallizes on the order
of hundreds of milliseconds. How do these relatively low-level,
fine-grained dynamics, however, relate to higher-order phenomena
on the order of hundreds of seconds or hours, such as aspects of
social interaction or other behavioral outcomes? There are likely
many relationships to be uncovered. For example, our model
predicts that several unforeseen category and stereotype represen-
tations may be simultaneously and partially active before perceiv-
ers arrive at an ultimate construal. Subtle bottom-up overlap with
an alternate category (e.g., slight feminine facial features on a
man) can lead to partial parallel activation of that alternate cate-
gory (e.g., female). Or, as discussed above, high-level cognitive
states or stereotypes can exert top-down influences on category-
level processing, in turn triggering partially active representations
of other candidate categories. Our model therefore predicts that,
for a great many of our construals of others, a variety of “hidden”
category and stereotype activations may be partially triggered in
parallel—activations that are not reflected in an ultimate percep-
tual outcome.

Such subtle activations triggered during real-time construal
could likely give rise to a variety of unforeseen downstream
consequences. The lasting effects of category and corresponding
stereotype activation on higher-order social phenomena—even the
briefest of kinds (e.g., priming)—have long been documented.
Activated stereotypes change how we think about others, judge
them, and remember them (Bodenhausen, 1988; Brewer, 1988;
Devine, 1989; Fiske & Neuberg, 1990). They also activate related
attitudes and behavioral tendencies, in turn changing how we feel
about others, how we evaluate them (Fazio, Sanbonmatsu, Powell,
& Kardes, 1986), and how we interact with others and treat them
(Bargh, Chen, & Burrows, 1996; Chen & Bargh, 1999). Thus,
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future work could investigate how “hidden” parallel activations of
alternate categories and stereotypes computed during the construal
process, or other aspects of this real-time process, relate to impor-
tant downstream phenomena. Moreover, such work could test how
variation in the presence of these parallel activations relates to
measures of individual differences (e.g., levels of prejudice or
motivation) or other behavioral outcomes.

Future Advances to the Model

Future work could advance the model and simulations presented
here in several ways. First, our simulations were limited to focus-
ing on how sensory information and high-level cognitive states
temporally conspire to shape category and stereotype activations.
However, any given change in one node of the system will lead to
changes in all other nodes, as the system works over time to
maximally satisfy all of its constraints in parallel. Thus, the model
is highly interactive and inherently bidirectional. It therefore as-
sumes that, beyond high-level cognitive states shaping lower-
levels of processing, lower-levels of processing also shape high-
level cognitive states. As such, the model predicts that sensory
information and category and stereotype activations should all lead
to a variety of changes in high-level cognitive states. However, in
the present work, our focus was on category and stereotype acti-
vations as the dependent measures of interest. Future work could
develop the model further by testing the reverse relationship,
making high-level states the dependent measure of interest (e.g.,
motivation, prejudice, top-down attention, affect) and examining
how these states are shaped by a rich interaction with lower-levels
of processing, as the model predicts.

The model could also be advanced by deriving network param-
eters empirically (see Footnote 4), and experimental studies could
be used to refine and expand the model. For example, data could
be collected for estimating the connection weights between cate-
gory nodes and potentially hundreds of stereotype nodes (e.g., via
explicit or implicit measures) and hundreds of cue nodes (e.g., via
face-modeling techniques), and all these nodes and their weighting
could be implemented in future versions. This would bring the
model closer to the empirical rigor and level of quantification
common to connectionist models of speech perception (e.g., Mc-
Clelland & Elman, 1986). Moreover, future work could opt to
replace the cue level with more sophisticated approaches to mod-
eling the uptake of sensory information, such as a pixel-based
image processor (e.g., Burton, Bruce, & Hancock, 1999). This
would make fewer assumptions about the role of specific features
and instead rely more on the emergent properties inherent in other
people’s sensory information. Together, such advances would al-
low the model to better reflect the real-world interrelatedness
among cues, categories, stereotypes, and high-level states.

Conclusion

A new approach to the study of person perception is on the rise,
as evidenced by the two recent volumes, The Science of Social
Vision (Adams, Ambady, Nakayama, & Shimojo, 2010) and The
Social Psychology of Visual Perception (Balcetis & Lassiter,
2010). Social psychologists are working alongside researchers in
the cognitive, neural, and vision sciences to provide a unified and
more complete understanding of person perception. In the present

work, we sought to open up the temporally extended, real-time
process of person construal. In this real-time process, person
construal is dynamic and interactive, and the connection between
the “sensory” and the “social” is an intimate one. Both our theory
and the model we have described here show that many person
construal phenomena may be accounted for by a dynamical system
that permits lower-level sensory perception and higher-order social
cognition to continually collaborate across multiple interactive
levels of processing. Low-level sensory information and high-level
social factors fluidly work together to give rise to stable and
integrated perceptions of other people. Probabilistic and parallel
construals gradually emerge through the ongoing interaction be-
tween categories, stereotypes, high-level cognitive states, and the
low-level processing of facial, vocal, and bodily cues. Our hope is
that a dynamic interactive framework for person construal will
provide a helpful guiding force in the burgeoning interdisciplinary
effort to understand the perception of our social worlds.
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Appendix A

Connection Weights in Simulations of Phenomena 1 and 3 (Figure 2)

Connection Weight

Category to category inhibition 	1
Category to cue excitation .75
Category to cue inhibition 	.25
Category to higher-order excitation .25
Category to higher-order inhibition 	.25
Category to stereotype excitation .8
Category to stereotype inhibition 	.3
Cue to category excitation .25
Cue to category inhibition 	.1
Cue to cue inhibition 	.1
Higher-order to category excitation .8
Higher-order to category inhibition 	.3
Higher-order to higher-order inhibition 	.5
Stereotype to category excitation .8
Stereotype to category inhibition 	.8
Stereotype to stereotype inhibition 	.3

(Appendices continue)
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Appendix B

Connection Weights in Simulations of Phenomenon 2 (Figure 5)

Connection Weight

Category to category inhibition 	.6
Category to cue excitation .125
Category to cue inhibition 	.3
Category to higher-order excitation .375
Category to higher-order inhibition 	.1
Category to stereotype excitation .25
Category to stereotype inhibition 	.25
Cue to category excitation .15
Cue to category inhibition 	.15
Cue to cue inhibition 	.05
Higher-order to category excitation .125
Higher-order to category inhibition 	.125
Higher-order to higher-order inhibition 	.5
Higher-order to stereotype excitation .45
Stereotype to category excitation .6
Stereotype to category inhibition 	.4

Appendix C

Proportion of Female Categorizations for Each Target Race (Phenomenon 3)

(Appendices continue)

Figure C1. The proportion of times that the network categorized a sex-ambiguous face as female (i.e., when
the Female category node won the competition), separately for each target race.
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Appendix D

Connection Weights in Simulations of Phenomenon 4 (Figure 7)

Connection Weight

Category to category inhibition 	1
Category to cue excitation .75
Category to cue inhibition 	.25
Category to higher-order excitation .25
Category to higher-order inhibition 	.25
Cue to category excitation .25
Cue to category inhibition 	.25
Higher-order to category excitation .8
Higher-order to category inhibition 	.2
Higher-order to higher-order inhibition 	.5

Appendix E

Category Activation Time Courses for Simulations of Phenomenon 4

(Appendices continue)

Figure E1. (A) The activation level of the Male and Female category nodes as a function of time (iterations)
following the presentation of an angry male face (solid lines) and a happy male face (dashed lines). (B) The
activation level of the Male and Female category nodes are plotted as a function of time (iterations) following
the presentation of an angry female face (solid lines) and a happy female face (dashed lines).
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Appendix F

Reaction Time Results in Simulations of Phenomenon 4

Appendix G

Connection Weights in Simulations of Phenomenon 5 (Figure 9)

Connection Weight

Category to category inhibition 	1
Category to cue excitation .5
Category to cue inhibition 	.7
Category to higher-order excitation .33
Cue to category excitation .9
Cue to category inhibition 	.4
Cue to cue inhibition 	.8
Higher-order to category excitation .33
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Figure F1. The simulated reaction times for the network’s categorization of angry (darker gray bars) and happy
(lighter gray bars) male and female faces.
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